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perspective flavor
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Fundamental for theory < Highly successful in practice
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Majority of solver speedup in last 30+ years comes from theory, not

hardware.

—Bob Bixby, CPLEX & Gurobi founderJ
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Fixed Dimension: Volume & Flatness

Theorem (Lenstra '83, Kannan, Tardos '87)

ILP solvable in time n®(" . (A, w,b,1, ,1). n= dimension, () = encoding /engthJ

Parameterized complexity perspective:
@ Runtime fla) - poly(3) with
parameter o = n and
input § = (A, w,b,1,u)

fla) poly(/3) clearly better than )
FPT (fixed-parameter tractable) XP

IP has many natural parameters: dimension n, #rows m, largest
coefficient ||A||oo, treewidth/treedepth of A, etc.
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Theorem (Lenstra '83, Kannan, Tardos '87)

ILP solvable in time n©(") . (A;w.b,l.u). n= dimension, (¢) = encoding length

Proof idea.

-~ Focus on feasibility. (optimization follows)
- P={x| Ax < b}.
a) Either P has large volume =

must contain an integer point
(Minkowski I)

b) Or P has small volume =
3 flatness direction =
cut into few slices & branch!

O]




Fixed Dimension: Volume & Flatness

Theorem (Lenstra '83, Kannan, Tardos '87)

ILP solvable in time n®(" . (A;w.b,l.u). n= dimension, (¢) = encoding length

Proof idea.

Pt Focus on feasibility. (optimization follows)
- P={x]|Ax<Db}.
_ a) Either P has large volume =

must contain an integer point
(Minkowski I)

b) Or P has small volume =
3 flatness direction =
cut into few slices & branch!
O

@ Nothing specific to linear IP — same idea works for any convex set P.
Further questions: indefinite objectives, adding quantifiers, etc.
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@ Real world is high-dimensional!
Brief history of variable dimension IP:

@ 1960's: Total Unimodularity (paths, matchings,
flows) [Hoffman, Kruskal]

@ 1980's: ILPs with few rows (generalized
knapsack) [Papadimitriou; Eisenbrand, Weismantel]

@ 2010—: lterative methods for block structured
programs [Aschenbrenner, Chen, De Loera, Hemmecke,

Képpe, Lee, Marx, Onn, Romanchuk, Schulz, Weismantel]

@ 2015—: Tree-structured ILPs

[Ganian, Jansen, Kratsch, Ordyniak, Ramanujan]
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Variable Dimension: Unifying Theory

@ Real world is high-dimensional!
Brief history of variable dimension IP:

@ 1980's: ILPs with few rows (generalized
knapsack)
@ 2010-: Iterative methods for block structured
programs
@ 2015—: Tree-structured ILPs
No strongly polynomial algorithms for these classes

(and few overall: TU, bimodular, binet). Seemingly
disconnected classes, different methods.

My best contribution: improve, unify, make strongly polynomial all of
these results! [K., Levin, Onn "18] + forthcoming book [Hildebrand, Képpe, K.]



lterative Augmentation

Max flow

augmenting step = augmenting path p
(because flows decompose into paths)

p feasible if enough capacity

p augmenting if adds positive (trivial)

flow optimal if A augmenting path




lterative Augmentation

Max flow

augmenting step = augmenting path p
(because flows decompose into paths)

p feasible if enough capacity

p augmenting if adds positive (trivial)

flow optimal if A augmenting path



lterative Augmentation

Max flow

augmenting step = augmenting path p
(because flows decompose into paths)
p feasible if enough capacity
"» P augmenting if adds positive (trivial)
' flow optimal if A augmenting path




lterative Augmentation

Max flow

augmenting step = augmenting path p
(because flows decompose into paths)

p feasible if enough capacity

p augmenting if adds positive (trivial)

flow optimal if A augmenting path




lterative Augmentation

Max flow

augmenting step = augmenting path p
(because flows decompose into paths)

p feasible if enough capacity

p augmenting if adds positive (trivial)

flow optimal if A augmenting path



lterative Augmentation

minwx : Ax=b,1<x<u,xe2Z"

Integer Programming Max flow
g € Kerz(A) ={geZ" | Ag =0} augmenting step = augmenting path p
(Ax=b = A(x+g)=Dhb) (because flows decompose into paths)
g feasible if 1 <x+g<u p feasible if enough capacity
g augmenting if w(x + g) < wx p augmenting if adds positive (trivial)

x optimal if A augmenting g € Kerz(A) flow optimal if A augmenting path
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g feasible if 1 < x +g <u @ good convergence for repeatedly
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@ algorithmically tame (big is OK)



lterative Augmentation

minwx : Ax=Db,1<x<u,xeZ”

Integer Programming Goal: Find 7 C Kerz(A), s.t.
g € Kerg(A) = {g € Z" | Ag = 0}
(Ax=b = A(x+g)=Db) @ x not optthen Jaugge T
g feasible h_c Isx+g=<u @ good convergence for repeatedly
g augmenting if w(x + g) < wx adding “good” g € T,

x optimal if A augmenting g € Kerz(A)

BUT Kerz(A) is too big and wild... © algorithmically tame (big is OK)

Answer:

Definition (Graver basis)
G(A) = {x € Kerz(A) | x is C -minimal}

(x Cy < x and y in one orthant A |x;| < |yi|; g € G(A) ~ “closest to origin")
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Strongly Polynomial Oracle Time Algorithm

minwx : Ax=b,1<x<u,xeZ”
Definition (Graver-best Step)

A Graver-best step for x is h s.t. x+ h is feasible and at least as good as
any feasible x + Ag with A € N and g € G(A).

Definition (Graver-best Oracle)

A Graver-best oracle for a matrix A is one that queried on w, b, 1, u and
X, returns a Graver-best step h for x.

Lemma (Hemmecke, Onn, Weismantel '10)

ILP solvable in O(n- (A, w,b,1,u)) calls to a Graver-best oracle.
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Strongly Polynomial Oracle Time Algorithm

minwx : Ax=b,1<x<u,xeZ”
Theorem (K., Levin, Onn '18)
ILP solvable in poly(n - (A)) calls to a Graver-best oracle.

Proof.
@ Solve LP relaxation in poly(n- (A)) time [Tardos '86]

@ Proximity: integer opt not far from continuous opt = shrink bounds
I',u’, shrink rhs b’.
© Reduce objective: I, u’ give small box = equiv. w' w/ small ||w/||o
[Frank, Tardos '87] + better bounds on ||w’||oc [WIP]

Q@ Convergence: (2n—2)(A,w',b’, 1’ u’) = poly(n- (A)) Graver-best
steps suffice to reach optimum.

Q: Where do | get the oracle?




Effective Graver-best Oracles

Primal graph Gp(A):

vertices ~ columns

edges ~ two columns & Jrow non-zero in both columns
Dual graph: Gp(A) = Gp(AT) (swap columns/rows)
Primal/dual treewidth/treedepth: tw/td of Gp(A)/Gp(A)
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Effective Graver-best Oracles

Primal graph Gp(A):

vertices ~ columns

edges ~ two columns & Jrow non-zero in both columns
Dual graph: Gp(A) = Gp(AT) (swap columns/rows)
Primal/dual treewidth/treedepth: tw/td of Gp(A)/Gp(A)

Lemma (Primal lemma [K., Levin, Onn '18])

Effective G-b oracle if twp(A) small and go(A) = maxgeg(a) ||8lloc small.

Lemma (Dual lemma [K., Levin, Onn '18])
Effective G-b oracle if twp(A) small and gi(A) = maxgcg(a) lIgll1 small.

Proof idea.
DP over tree decomposition. ]

Q: what ILP has small twp(A) + goo(A) or twp(A) + g1 (A)?
A: 2/multi-stage stochastic or n/tree-fold IPs!  Let's have a look...
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n-fold Integer Programs
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Lemma (De Loera, Hemmecke, Onn, Weismantel '08)
g1(A) is small (f(||Al|, 1, s, t)).




n-fold Integer Programs

AL A - A
A, 0 - 0

Lemma (K., Levin, Onn '18)
g1(A) is small (f(||Al|c, 1, s, t)).




n-fold Integer Programs

A AL - A
Ay 0 - 0 o

A— 0 Ay - 0 Al‘r n
0 O Ao

81(A) is small (f(||Allo, 1, s, 1)).

n-fold IP solvable in oracle time f{||Al|, r, s) poly(nt - (A))
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Lemma (K., Levin, Onn '18)
g1(A) is small (f(||Al|so, 1, S, t)). )J
Theorem (K., Levin, Onn '18)
n-fold IP solvable in oracle time f(||A||, r, s) poly(nt - (A)) J

(Previously: nUlAl<r59 or f{||A| o, r,s,t) - poly(n- (A, w,b,1,u)).



n-fold Integer Programs
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Lemma (K., Levin, Onn '18)
g1(A) is small (f(||Al|co, 1, 5, t) ). 2) ’

Theorem (K., Levin, Onn '18)
n-fold IP solvable in oracle time f(||A||, r, s) poly(nt - (A)) ’

Generalization: Tree-fold IP — tree block structure, bounded g1 (A) and twp(A).
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2-stage stochastic Integer Programs

B B 0 --- 0

B, 0 By --- 0 @ transpose of n-fold IP = twp(A)
A= : o . : is bounded

B 0 0 - B

Lemma (Hemmecke, Schulz '01)

8 (A) is small.

Generalizes to multi-stage stochastic IP — transpose of tree-fold IP,
bounded twp(A) and g (A).

Theorem (K., Levin, Onn '18)
2-stage stochastic IP solvable in oracle time f(||A||oc, r, s) poly(n - (A))

Previously: f{||Al|s, r,s) poly(n - (A, w, b, 1, u))
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Surprise: Tree-fold IP is universal for all IPs with bounded tdp(A)
(i.e., every A with small tdp(A) embeds into tree-fold IP matrix without blow-up)
Ditto for multi-stage stochastic IP and bounded tdp(A).
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Treewidth & Treedepth

Surprise: Tree-fold IP is universal for all IPs with bounded tdp(A)
(i.e., every A with small tdp(A) embeds into tree-fold IP matrix without blow-up)
Ditto for multi-stage stochastic IP and bounded tdp(A).
Theorem (K., Levin, Onn '18)
ILP solvable in time
o | Alloc, tdp(A)) - poly(n- (A))
o ([ Alloc, tdp(A)) - poly(n- (A))

Previously only deciding feasibility in time f{||A, b/, tdp(A)) - n; nothing known
for tdp(A).
Parameterization is tight:

@ ILP not likely FPT parameterized by tdp(A)/tdp(A) only,

@ ILP is NP-hard for constant ||Al|. + twp(A)/twp(A).
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@ Ancient questions
e Who should govern?
e How to select them?
e What is good for society?

@ Old fundamental results

e 1743-1794: Marquis de Condorcet
e 1733-1799: Jean-Charles de Borda
e 1832-1898: Charles Lutwidge Dodgson (aka Lewis Carroll)

@ Recent topic

o Brexit
e Trump
e Facebook

Boundaries are fruitful!
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Candidates: A, B and %*.

People: preference (e.g. M > A > %), active/latent, bribery costs, etc.
(simplify: just preference)

Society: how many people of which type = Society graph:

Voting rule: given a society,

) 2; w(2) =10 t 3; w(3) =10 .
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o 6 w(E) — 42 type 5 w(3) — 42 @ Plurality = most times
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Society w = (21, 10, 10, 21, 42, 42) everyone head-to-head

edges = swap distance 1.



Intro: Voting

Candidates: A, B and %*.

People: preference (e.g. M > A > %), active/latent, bribery costs, etc.
(simplify: just preference)

Society: how many people of which type = Society graph:

Voting rule: given a society,

) 2; w(2) =10 t 3; w(3) =10 .
ype 22 =10 type 3 wld) who should win?

I>A>*—{.>*>A <
type 1; w(1) =21 ‘ ‘ type 4; w(4) =21
7

. . * - W~ A
type 6; w(6) =42 type 5; w(5) = 42
( ®)=4_|

@ Plurality = most times

A>*>.‘—{*>A>l‘ ﬁI’St
o Condorcet = beats
Society w = (21, 10, 10, 21, 42, 42) everyone head-to-head
edges = swap distance 1. e Dodgson = least

#swaps to Condorcet
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W (2) =25 W (3) =25
Wil =6 B> A% W% > A W) = 6
(-) */ \*()l
A-N- W (6) = 42 W (5) = 42 ~ WA
v ®=2 |
A>-%>-01 * >~ A >0

w' =w + A with A = (—15,+15, +15, —15,0,0)
B wins: 48 = w(1) + w(6) = w(4) + w(5) < w(2) + w(3) = 50

Bribery: cheapest way to move voters s.t. B wins Plurality?

(Assume unit cost per swap.)

Robust model: captures many prior manipulation models — full bribery,
only shift B, pay-per-swap, add/delete voters, etc.

BTW: Society graph + move + change model is “obvious” but new and very
useful itself! [Faliszewski, Gonen, K., Talmon] and [AAMAS; Knop, K., Mnich]J
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Before 2017: Bribery in time f(#types of people) - log(#people) for
“simple” voting rules (many ad-hoc results; all use Lenstra), BUT:
e fis double-exponential :(

@ cannot handle different voter costs :(

@ cannot handle Dodgson’s rule :(

Challenge #1: Replace Lenstra, make single-exp!
Challenge #2: Handle different voter costs! (replace Solved |

#types w/ #candidates)
[2014; Bredereck, Chen, Faliszewski, Guo, Niedermeier, Woeginger]

Theorem (STACS, ESA, AAMAS; Knop, K., Mnich)

Bribery in time:
© single-exp f(#candidates) - poly(#types) - log(#people) for “simple” rules,
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Complexity of Bribery (contd.)

Theorem (STACS, ESA, AAMAS; Knop, K., Mnich)

Bribery in time:
© single-exp f(#candidates) - poly(#types) - log(#people) for “simple” rules,
@ f(#types) - poly(#people) for “complex” rules, incl. Dodgson.

Proof of (1).

Idea: Encode in n-fold IP:
Blocks ~ types of people, A A Ar

. Ay 0 0
A block ~ #ppl moving to other type, 0 Ay --- 0
(Ay---Aq) ~ voting rule. S
Apply strongly FPT n-fold algorithm! 0 0 Ay

@ need few constraints, small || A1]|co-
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Complexity of Bribery (contd.)

Theorem (STACS, ESA, AAMAS; Knop, K., Mnich)

Bribery in time:
@ single-exp f(#candidates) - poly(#types) - log(#people) for “simple” rules,

@ f(#types) - poly(#people) for “complex” rules, incl. Dodgson.

Proof of (2).
Want: formula ®podgson = "% is Dodgson winner” = least #swaps to Condorcet

3 sequence of k swaps ~- % is Condorcet winner AND
(I)Dodgson = Elk € N : . .
Vc # % at least k+ 1 swaps ~~ c is Condorcet winner.

Encode ®podgson in terms of society / move / change vectors

= decide IxVy Jz : ¥(x,y,z) sentence = [much modeling work]
= decide Vx Jy : A(x,y) < b sentence

@® Thm [Eisenbrand, Shmonin '08]: Can decide

Vb e QNZm3Ix € Z" : Ax < b in time f{n, m) - poly(||A, b||~) 0
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Diffusion Process in Society Graphs

Diffusion ~ how opinions spread; previous models highly intractable :(

@ Diffusion stabilizes quickly

; o few types of people = can
wpeliw()=0  : |W-Ark| model process as fixed dim ILP
A-N- % 27 type 6; w(6) =63 Idea: ILP modeling tricks = can
: A- %N express conditionals “if neighborhood

majority of type i then move to type i

in next step”

perspective of A > Hl >
“majority of neighbors thinks A > % >~ " = ® BRIBERY IN SOCIETY

peer pressure: “prob should change my mind” GRAPHS: minimum move s.t.
(synchronous / asynchronous) % wins after stabilization?

Theorem (Faliszewski, Gonen, K., Talmon '18)

BRIBERY IN SOCIETY GRAPHS solvable in time
f(#types of people) - log(#people), for most voting rules.




Other Applications

n-fold IP: no applications in parameterized complexity before 2016. Now:

@ Scheduling with short jobs and many machine types; many different
objectives (Cmax, > w;Cj, tardiness, £,-norm, weighted flow time, ...)
[JoSh '17; Knop, K.] & [WIP]
Efficient PTASes [Jansen, Klein, Maack, Rau '18]

o Stringology: double-exp = single-exp, many problems
[ESA; Knop, K., Mnich]
@ Graph algorithms: graph layout problems, simple dense graphs [ditto]
@ Computational Social Choice [STACS, ESA; Knop, K., Mnich]



Engineering & Research Directions
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Summary: “small” ¢} /{s-norm augmenting steps might be good enough.
Q: How small? True guarantee: g1(A) — might be large in practice :(
A: Choose some g1 € N, 1 < g1 < g1(A), and see what happens!

(What could go wrong: local optima or slow convergence) .. We tested it:
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Engineering: Experiments & Outlook

Summary: “small” ¢} /{s-norm augmenting steps might be good enough.
Q: How small? True guarantee: g1(A) — might be large in practice :(
A: Choose some g1 € N, 1 < g1 < g1(A), and see what happens!

(What could go wrong: local optima or slow convergence) .. We tested it:

1 @ much better than predicted worst case!
=K \ | Idea: use tree decomposition to divide &

conquer ILP; previously impossible due to
inefficient tw computations.

Introducing automatic decomposition methods in
primal heuristics is very interesting.
—NMatthias Képpe (UC Davis)

(Student project [Altmanova, Knop, K.] & [WIP])
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SAT /ILP oracles (esp. for problems beyond NP)
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e Tunable algorithms (vs. all-or-nothing algorithms)
e Turbocharging heuristics (it works! let’s build the theory)

Cheers to: K. Altmanova, J. Crampton, F. Eisenbrand,
Than k G. Gutin, R. Hildebrand, Ch. Hunkenschréder,
you ! K.-M. Klein, D. Knop, M. Képpe, J. Lee, A. Levin,
M. Mnich, S. Onn, and R. Wattrigant.
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