AN ALGORITHMIC THEORY OF INTEGER PROGRAMMING

Friedrich Eisenbrand, Christoph Hunkenschroder, Kim-Manuel Klein,
Martin Koutecky, Asaf Levin, Shmuel Onn

MIP 2019, MIT

~—~

TECHNION

Israel Institute
of Technology

CHARLES UNIVERSITY
Faculty of mathematics

and physics

OUTLINE

OUTLINE

My goal is to sell you this paper:
An Algorithmic Theory of Integer Programming [arxiv:1904.01361]

Friedrich Eisenbrand, Christoph Hunkenschréder, Kim-Manuel Klein, Martin Koutecky, Asaf Levin, Shmuel Onn

OUTLINE

My goal is to sell you this paper:
An Algorithmic Theory of Integer Programming
Friedrich Eisenbrand, Christoph Hunkenschréder, Kim-Manuel Klein, Martin Koutecky, Asaf Levin, Shmuel Onn

[arxivi1904.01361]

Talk Outline:
1. Integer Programming: Structural Parameterizations

2. The Theory: Iterative Augmentation
3. The Extras: Proximity, Scaling, Reducibility, Near-linear / Strongly Polynomial

Algorithms, Lower Bounds, etc.

4. Qutlook

OUTLINE

My goal is to sell you this paper:
An Algorithmic Theory of Integer Programming [arxiv:1904.01361]

Friedrich Eisenbrand, Christoph Hunkenschréder, Kim-Manuel Klein, Martin Koutecky, Asaf Levin, Shmuel Onn

Talk Outline:

1.
2.
3.

Integer Programming: Structural Parameterizations

The Theory: Iterative Augmentation

The Extras: Proximity, Scaling, Reducibility, Near-linear / Strongly Polynomial
Algorithms, Lower Bounds, etc.

. Outlook

OUTLINE

My goal is to sell you this paper:
An Algorithmic Theory of Integer Programming [arxiv:1904.01361]
Friedrich Eisenbrand, Christoph Hunkenschréder, Kim-Manuel Klein, Martin Koutecky, Asaf Levin, Shmuel Onn
Talk Outline:
1. Integer Programming: Structural Parameterizations
2. The Theory: Iterative Augmentation
3. The Extras: Proximity, Scaling, Reducibility, Near-linear / Strongly Polynomial
Algorithms, Lower Bounds, etc.
4. Outlook

OUTLINE

My goal is to sell you this paper:
An Algorithmic Theory of Integer Programming
Friedrich Eisenbrand, Christoph Hunkenschréder, Kim-Manuel Klein, Martin Koutecky, Asaf Levin, Shmuel Onn

[arxivi1904.01361]

Talk Outline:
1. Integer Programming: Structural Parameterizations

2. The Theory: Iterative Augmentation
3. The Extras: Proximity, Scaling, Reducibility, Near-linear / Strongly Polynomial

Algorithms, Lower Bounds, etc.

4. Outlook

INTEGER PROGRAMMING: STRUCTURAL
PARAMETERIZATIONS

VARIABLE DIMENSION: UNIFYING THEORY

@ Real world is high-dimensional!
Brief history of variable dimension IP:
- 1960's: Total Unimodularity (paths, matchings, flows)
[Hoffman, Kruskal]

- 1980’s: ILPs with few rows (generalized knapsack)

[Papadimitriou; Eisenbrand, Weismantel; Jansen, Rohwedder]

- 2010-: Iterative methods for block structured
programs [Aschenbrenner, Chen, De Loera, Hemmecke,

Koppe, Lee, Marx, Onn, Romanchuk, Schulz, Weismantel]

- 2015—: Tree-structured ILPs

[Ganian, Jansen, Kratsch, Ordyniak, Ramanujan]

VARIABLE DIMENSION: UNIFYING THEORY

@ Real world is high-dimensional!
Brief history of variable dimension IP:

- 1980’s: ILPs with few rows (generalized knapsack)

[Papadimitriou; Eisenbrand, Weismantel; Jansen, Rohwedder]

- 2010-: Iterative methods for block structured
programs [Aschenbrenner, Chen, De Loera, Hemmecke,

Koppe, Lee, Marx, Onn, Romanchuk, Schulz, Weismantel]
- 2015-: Tree-structured ILPs
[Ganian, Jansen, Kratsch, Ordyniak, Ramanujan]
No strongly polynomial algorithms for these classes (and
few overall: TU, bimodular, binet).

VARIABLE DIMENSION: UNIFYING THEORY

@ Real world is high-dimensional!
Brief history of variable dimension IP;

- 1980’s: ILPs with few rows (generalized knapsack)
[proximity, DP]
- 2010 Iterative methods for block structured
programs [augmentation, Ramsey, Algebra, DP]
- 2015-: Tree-structured ILPs [Lenstra, treewidth]
No strongly polynomial algorithms for these classes (and

few overall: TU, bimodular, binet). Seemingly disconnected
classes, different methods.

VARIABLE DIMENSION: UNIFYING THEORY

@ Real world is high-dimensional!
Brief history of variable dimension IP:

- 1980's: ILPs with few rows (generalized knapsack)
- 2010~: Iterative methods for block structured
programs
- 2015—: Tree-structured ILPs
No strongly polynomial algorithms for these classes (and

few overall: TU, bimodular, binet). Seemingly disconnected
classes, different methods.

Our result: improves, unifies, simplifies, makes strongly-poly all of these results!

STRUCTURAL PARAMETERIZATIONS: THE GRAPHS OF A

minf(x) : Ax=b, | <x<u,xeZ" (IP)

STRUCTURAL PARAMETERIZATIONS: THE GRAPHS OF A

minf(x) : Ax=b, l<x<u,xeZ" (IP)

X1 4 2 4+ X, =1 (C)
3X3 —2X, = 6 (Gy)
Xo+2x3 =2 (G)

—X1 43X, =2 (C4)

)

OSX'\;X27X3)X4S5 (bOX

STRUCTURAL PARAMETERIZATIONS: THE GRAPHS OF A

minf(x) : Ax=b, | <x<u,xeZ" (IP)

X1+ 2% + X4 = 11 (CW)

3X3 — 2X4 =6 (Cz)
Xy 4+ 2X3 =2 (C3) X1 C1

— 3X, =2 C

X1+ 3Xy (Cs) X G

0 < Xp,X2,X3, X4 <5 (bOX)
X3 C3

O—® [

Xy Cy

Incidence: G,(A)

Primal: Gp(A) Dual: Gp(A)

STRUCTURAL PARAMETERIZATIONS: SMALL GRAPHS ~ CLASSICS

Lenstra '83 = ILP solvable in time fp(|Gp|) - (A, b, w)

STRUCTURAL PARAMETERIZATIONS: SMALL GRAPHS ~ CLASSICS

Lenstra '83 = ILP solvable in time fp(|Gp|) - (A, b, w)
Parameterized complexity perspective:
@ Runtime f(«) - poly(5) with

parameter o = |Gp| = n and

input 8 = (A, w, b)

fle) poly(B) clearly better than g
FPT (fixed-parameter tractable) Xp

IP has many natural parameters: dimension n, #rows m, largest coefficient ||A||~, etc.

STRUCTURAL PARAMETERIZATIONS: SMALL GRAPHS ~ CLASSICS

Lenstra '83 = ILP solvable in time fp(|Gp|) - (A, b, w)
because |Gp| < |G| also in fp(|G/|) - (A, b, w)

STRUCTURAL PARAMETERIZATIONS: SMALL GRAPHS ~ CLASSICS

Lenstra '83 = ILP solvable in time fp(|Gp|) - (A, b, w)
because |Gp| < |G| also in fp(|G/|) - (A, b, w)

Papadimitriou '81 = ILP solvable in time fp(|Gp|, [|Allc) - 1 - (b, W)
can't parameterize only by |Gp| or ||A||s.

STRUCTURAL PARAMETERIZATIONS: SMALL GRAPHS ~ CLASSICS

Lenstra '83 = ILP solvable in time fp(|Gp|) - (A, b, w)
because |Gp| < |G| also in fp(|G/|) - (A, b, w)

Papadimitriou '81 = ILP solvable in time fp(|Gp|, [|Allc) - 1 - (b, W)
can't parameterize only by |Gp| or ||A||s.

Graph size = too strict a parameter. What else?

STRUCTURAL PARAMETERIZATIONS: TREEWIDTH

+ a popular and successful parameter

STRUCTURAL PARAMETERIZATIONS: TREEWIDTH

+ a popular and successful parameter

— not for IP
NP-hard even for twp, twp, tw; < 3, ||Aljcc = 2
(twp(A) = tw(Gp(A)), two(A) = tw(Gp(A)), twi(A) = tw(Gi(A)).)

STRUCTURAL PARAMETERIZATIONS: TREEWIDTH

+ a popular and successful parameter

— not for IP
NP-hard even for twp, twp, tw; < 3, ||Aljcc = 2
(twp(A) = tw(Gp(A)), two(A) = tw(Gp(A)), twi(A) = tw(Gi(A)).)

A more restrictive parameter?

Size

STRUCTURAL PARAMETERIZATIONS: TREEDEPTH

tw

| 1 if [V(G)| =1,
td td(G) = {14 min,ey(g) td(G —v) if connected,
Ve MaXgG; component td(G;) if disconnected

size

STRUCTURAL PARAMETERIZATIONS: TREEDEPTH

1 if |V(G)] =1,
td(G) = {14 min ey td(G —v) if connected,

MaXgG; component td(G)) if disconnected

tw

| Example: n-fold IP matrix

td

‘ A A e A

VC A, 0 -+ 0 ot

| A=| 0 A - 0 Aqlr

size Lo Agls n

STRUCTURAL PARAMETERIZATIONS: TREEDEPTH

1 if V(G)| =1,

w td(G) = { 14 miney(g) td(G — v) if connected,

| maxg, component td(G;) if disconnected
td

\ - Main result: IP solvable in time

ve g(min{tdp(A), tdo(A)}. [Alloc) - POLY(n)

‘ = FPT par. by min{tdp(A), tdp(A)} and ||A]|co
size

STRUCTURAL PARAMETERIZATIONS: TREEDEPTH
1 if V(G)| =1,

td(G) = { 14 miney(g) td(G — v) if connected,
td

|

VC

size

maxg, component td(G;) if disconnected

- Main result: IP solvable in time

g(min{tdp(A), tdo(A)}, [|Allc) - POLY(n)
= FPT par. by min{tdp(A), tdp(A)} and [|A|lec

- ILP NP-h for td; = 5 and ||Allec =1 [Eiben et al. '19]

THE THEORY: ITERATIVE AUGMENTATION

ITERATIVE AUGMENTATION

Min-cost flow

ITERATIVE AUGMENTATION

Min-cost flow

ITERATIVE AUGMENTATION

Min-cost flow

20

ITERATIVE AUGMENTATION

Min-cost flow

astep=acycle C

(because circulations decompose into cycles)
C feasible if enough capacity (fits res. net)
C augmenting if negative
flow cost minimal if A negative cycle

ITERATIVE AUGMENTATION

20

@10

15

25

10

10

20

Min-cost flow

astep=acycle C

(because circulations decompose into cycles)
C feasible if enough capacity (fits res. net)
C augmenting if negative
flow cost minimal if A negative cycle

ITERATIVE AUGMENTATION

minf(X) : Ax=b, l<x<u,xeZ"

Integer Programming

gcKerz(A)={gecZ"|Ag=0}
(Ax=b = A(x+g)=Db)

g feasibleif <K x+g<u

g augmenting if f(x + g) < f(x)

x optimal if A augmenting g € Kerz(A)

Min-cost flow

astep=acycleC

(because circulations decompose into cycles)
C feasible if enough capacity (fits res. net)
C augmenting if negative
flow cost minimal if A negative cycle

ITERATIVE AUGMENTATION

minf(X) : Ax=b, l<x<u,xeZ"

Integer Programming

g e Kerz(A)={geZ"|Ag =0}
(Ax=b = A(x+g)=Dhb)

gfeasibleifI<x+g<u

g augmenting if f(x + g) < f(x)

x optimal if A augmenting g € Kerz(A)

ITERATIVE AUGMENTATION

minf(X) : Ax=b, l<x<u,xeZ"

Integer Programming

g e Kerz(A)={geZ"|Ag =0}
(Ax=b = A(x+g)=Dhb)

gfeasibleifI<x+g<u

g augmenting if f(x + g) < f(x)

x optimal if A augmenting g € Kerz(A)

BUT Kerz(A) too big and wild...

ITERATIVE AUGMENTATION

minf(X) : Ax=b, l<x<u,xeZ"

Integer Programming Goal: Find T C Kerg(A), sit.

g e Kerz(A)={geZ"|Ag =0}
(Ax=b = A(x+g)=Dhb)

g feasible ifL<x+g<u 2. good convergence for repeatedly adding

g augmenting if f(x + g) < f(x) “good”" g e T,

x optimal if A augmenting g € Kerz(A)

1. x not opt then 3 augmentingg e T

3. algorithmically tame (big is OK)
BUT Kerz(A) too big and wild...

ITERATIVE AUGMENTATION

minf(X) : Ax=b, l<x<u,xeZ"

Integer Programming Goal: Find 7 C Kerz(A), s.t.

g e Kerz(A)={geZ"|Ag =0}
(Ax=b = A(x+g)=Dhb)

g feasible ifL<x+g<u 2. good convergence for repeatedly adding

g augmenting if f(x + g) < f(x) “good”" g e T,

x optimal if A augmenting g € Kerz(A)

1. x not opt then 3 augmentingg e T

3. algorithmically tame (big is OK)
BUT Kerz(A) too big and wild...

Answer: (x Cy < xandyinsame orthant A |x;| < |vi|; € € G(A) ~ “closest to origin”)

Definition (Graver basis)
G(A) = {x € Kerz(A) | x is C -minimal}

ITERATIVE AUGMENTATION (SEC 2.1)

(x Cy < xandyinsame orthant A |x;| < |vi|; g € G(A) ~ “closest to origin”)
Definition (Graver basis)
G(A) = {x € Kerz(A) | x is C -minimal}

Prop 6:

ITERATIVE AUGMENTATION (SEC 2.1)

(x Cy < xandyinsame orthant A |x;| < |vi|; g € G(A) ~ “closest to origin”)
Definition (Graver basis)
G(A) = {x € Kerz(A) | x is C -minimal}
Prop 6: Every h € Kery(A) conformally decomposes as h = ,221 AiS;
Df: h € Kerz(A) is Graver-best step for x if as good as Ag for any A € N, g € G(A)
Df: h € Kerz(A) is halfling if half as good as Graver-best

ITERATIVE AUGMENTATION (SEC 2.1)

(x Cy < xandyinsame orthant A |x;| < |vi|; g € G(A) ~ “closest to origin”)

Definition (Graver basis)
G(A) = {x € Kerz(A) | x is C -minimal}

Prop 6: Every h € Kery(A) conformally decomposes as h = ,221 AiS;
Df: h € Kerz(A) is Graver-best step for x if as good as Ag forany A € N, g € G(A)
Df: h € Kerz(A) is halfling if half as good as Graver-best
Lm 7: Need 3nlog fmax halflings for convergence (reduce ~ 1 of gap by each step)
Lm 9: If h as good as any Ag for A € {1,2,4.8,...} and g € G(A), then h is halfling

ITERATIVE AUGMENTATION (SEC 2.1)

(x Cy < xandyinsame orthant A |x;| < |vi|; g € G(A) ~ “closest to origin”)
Definition (Graver basis)
G(A) = {x € Kerz(A) | x is C -minimal}

Prop 6: Every h € Kery(A) conformally decomposes as h = ,221 AiS;
Df: h € Kerz(A) is Graver-best step for x if as good as Ag forany A € N, g € G(A)
Df: h € Kerz(A) is halfling if half as good as Graver-best
Lm 7: Need 3nlogfmax halflings for convergence (reduce ~ 1 of gap by each step)
Lm 9: If h as good as any Ag for A € {1,2,4,8,...} and g € G(A), then h is halfling
Df: g solves G(A)-best{f(x+ g |Ag =0, <x+Ag<u,geZ")}ifas good as
min{f(x+Ag |Ag =0, <x+Ag<u,gec G(A)}

ITERATIVE AUGMENTATION (SEC 2.1)

(x Cy < xandyinsame orthant A |x;| < |vi|; g € G(A) ~ “closest to origin”)
Definition (Graver basis)
G(A) = {x € Kerz(A) | x is C -minimal}

Prop 6: Every h € Kery(A) conformally decomposes as h = ,221 AiS;
Df: h € Kerz(A) is Graver-best step for x if as good as Ag forany A € N, g € G(A)
Df: h € Kerz(A) is halfling if half as good as Graver-best
Lm 7: Need 3nlogfmax halflings for convergence (reduce ~ 1 of gap by each step)
Lm 9: If h as good as any Ag for A € {1,2,4,8,...} and g € G(A), then h is halfling
Df: g solves G(A)-best{f(x + Ag|Ag =0, < x+Ag<u,geZ")}ifas good as
min{f(Xx + Ag | Ag =0, L < x+ g <u, ge G(A)}, call it (AuglP)

ITERATIVE AUGMENTATION (SEC 2.1)

(x Cy < xandyinsame orthant A |x;| < |vi|; g € G(A) ~ “closest to origin”)

Definition (Graver basis)
G(A) = {x € Kerz(A) | x is C -minimal}

Prop 6: Every h € Kery(A) conformally decomposes as h = ,221 AiS;
Df: h € Kerz(A) is Graver-best step for x if as good as Ag forany A € N, g € G(A)
Df: h € Kerz(A) is halfling if half as good as Graver-best
Lm 7: Need 3nlogfmax halflings for convergence (reduce ~ 1 of gap by each step)
Lm 9: If h as good as any Ag for A € {1,2,4,8,...} and g € G(A), then h is halfling
Df: g solves G(A)-best{f(x + Ag|Ag =0, < x+Ag<u,geZ")}ifas good as
min{f(Xx + A\g | Ag =0, L < x+ \g < u, geG(A)} call it (AuglP)
Lm 12: (AugIP) & Xg tm7&2 (1p) (= nlog ||u — l|| s log fmax calls to (AuglP) oracle)

ITERATIVE AUGMENTATION (SEC 2.1)

(x Cy < xandyinsame orthant A |x;| < |vi|; g € G(A) ~ “closest to origin”)

Definition (Graver basis)
G(A) = {x € Kerz(A) | x is C -minimal}

Prop 6: Every h € Kery(A) conformally decomposes as h = ,221 AiS;
Df: h € Kerz(A) is Graver-best step for x if as good as Ag forany A € N, g € G(A)
Df: h € Kerz(A) is halfling if half as good as Graver-best
Lm 7: Need 3nlogfmax halflings for convergence (reduce ~ 1 of gap by each step)
Lm 9: If h as good as any Ag for A € {1,2,4,8,...} and g € G(A), then h is halfling
Df: g solves G(A)-best{f(x + Ag|Ag =0, < x+Ag<u,geZ")}ifas good as
min{f(Xx + A\g | Ag =0, L < x+ \g < u, geG(A)} call it (AuglP)

Lm7&9 (lP)

Lm 12: (AuglP) & xg ——= (=~ nlog |lu — L|| log fmax calls to (AuglP) oracle)

Lm 13: (AuglP) = xo (auxiliary instance: get x s.t. Ax = b, then minimize bound violation)

ITERATIVE AUGMENTATION (SECTIONS 2.3-2.4)

Df: goo(A) = maxgeg(a) 18lloc, 91(A) = maxgeg(a) II8]I1

ITERATIVE AUGMENTATION (SECTIONS 2.3-2.4)

Df: goo(A) = maxgeg(a) [18lloo, 91(A) = maxgeg(a) IIElI1
Sec 2.3: Solving (AuglP) quickly by DP
Lm 22: (AuglP) solvable in time (2g.0(A) + 1)1*™) . n (=~ CSP arc-consistency DP '85)
Lm 23: (AuglP) solvable in time (2||A]|ocg1(A) 4 1)Ctde(*) . p (=~ Papadimitriou’s DP '81)

ITERATIVE AUGMENTATION (SECTIONS 2.3-2.4)

Df: goo(A) = maxgeg(a) [18lloo, 91(A) = maxgeg(a) IIElI1
Sec 2.3: Solving (AuglP) quickly by DP
Lm 22: (AuglP) solvable in time (2g.0(A) + 1)1*™) . n (=~ CSP arc-consistency DP '85)
Lm 23: (AuglP) solvable in time (2||A]|ocg1(A) 4 1)Ctde(*) . p (=~ Papadimitriou’s DP '81)
Sec 2.4: Bounding Graver norms

Lm 26: g (A) < g(||A]| oo, tdp(A)) (g is exponential tower. Pf uses new lemma of Klein.)
Lm 28: g1(A) < g(J|A]| o, tdp(A)) (g is double-exp. Pf uses Steinitz lemma.)

ITERATIVE AUGMENTATION (SECTIONS 2.3-2.4)

Df: goo(A) = maxgeg(a) [18lloo, 91(A) = maxgeg(a) IIElI1
Sec 2.3: Solving (AuglP) quickly by DP
Lm 22: (AuglP) solvable in time (2g.0(A) + 1)1*™) . n (=~ CSP arc-consistency DP '85)
Lm 23: (AuglP) solvable in time (2||A]|ocg1(A) 4 1)Ctde(*) . p (=~ Papadimitriou’s DP '81)
Sec 2.4: Bounding Graver norms (better for relevant special cases)

Lm 26: g (A) < g(||A]| oo, tdp(A)) (g is exponential tower. Pf uses new lemma of Klein.)
Lm 28: g1(A) < g(J|A]| o, tdp(A)) (g is double-exp. Pf uses Steinitz lemma.)

ITERATIVE AUGMENTATION (SECTIONS 2.3-2.4)

Df: goo(A) = maxgega) lI8lloc, G1(A) = maxgeg(ay lIE]l1
Sec 2.3: Solving (AuglP) quickly by DP

Lm 22: (AuglP) solvable in time (2g.0(A) + 1)1*™) . n (=~ CSP arc-consistency DP '85)

Lm 23: (AuglP) solvable in time (2||A]|ocg1(A) 4 1)Ctde(*) . p (=~ Papadimitriou’s DP '81)

Sec 2.4: Bounding Graver norms (better for relevant special cases)

Lm 26: g (A) < g(||A]| oo, tdp(A)) (g is exponential tower. Pf uses new lemma of Klein.)

Lm 28: g1(A) < g(J|A]| o, tdp(A)) (g is double-exp. Pf uses Steinitz lemma.)
Theorem

(IP) solvable in time g(min{tdp(A), tdp(A)}, |Alloc)n? log |[U — ||| s log frmax-

THE EXTRAS

THE EXTRAS: PROXIMITY BOUNDS

Theorem (Basic proximity)

Let x*,z* be a fractional and integer optimum, respectively. There exist X,Z frac/int
optima s.t, forany p > 1,

IX* =2]lp, Iz = Xllp <1 - gp(A) .

THE EXTRAS: PROXIMITY BOUNDS

Theorem (Basic proximity)

Let x*,z* be a fractional and integer optimum, respectively. There exist X,Z frac/int
optima s.t, forany p > 1,

X" = 2|lp, |z* = X[lp < n-gp(A) -
Theorem (Scaling proximity)
Let x> be opt of s-scaled down instance. There exists x* opt s.t.

Is- X =x*[lp <s-n-gp(A) -

THE EXTRAS: PROXIMITY BOUNDS

Theorem (Basic proximity)

Let x*,z* be a fractional and integer optimum, respectively. There exist X,Z frac/int
optima s.t, forany p > 1,

IX* =2]lp, Iz = Xllp <1 - gp(A) .

Theorem (Scaling proximity)
Let x> be opt of s-scaled down instance. There exists x* opt s.t.

Is- X =x*[lp <s-n-gp(A) -

“Modern version” of [Hochbaum, Shantikumar '90]

THE EXTRAS: REDUCIBILITY BOUNDS

Runtime dependence on log fmax ~ obstacle for strongly-poly algos

THE EXTRAS: REDUCIBILITY BOUNDS

Runtime dependence on log fmax ~ obstacle for strongly-poly algos
— Replace wx with w'x which is equivalent (does not change optima) and
W |oo < 2POYN) if |u, £]| oo < N. [Frank, Tardos '87]

THE EXTRAS: REDUCIBILITY BOUNDS

Runtime dependence on log fmax ~ obstacle for strongly-poly algos
— Replace wx with w'x which is equivalent (does not change optima) and
W |oo < 2POYN) if |u, £]| oo < N. [Frank, Tardos '87]
BUT: adds n?log n factor in the runtime :(

THE EXTRAS: REDUCIBILITY BOUNDS

Runtime dependence on log fmax ~ obstacle for strongly-poly algos
= Replace wx with w'x which is equivalent (does not change optima) and
W [|oo < 2P0 if flu, £]|oe < N [Frank, Tardos '87]
BUT: adds n?log n factor in the runtime :(
Theorem (Linear reducibility)
1) 3 equivalent W' s.t. [|[W]|s < N, 2) asymptotically optimal

THE EXTRAS: REDUCIBILITY BOUNDS

Runtime dependence on log fmax ~ obstacle for strongly-poly algos
= Replace wx with w'x which is equivalent (does not change optima) and
W |oo < 2POYN) if |u, £]| oo < N. [Frank, Tardos '87]
BUT: adds n?log n factor in the runtime :(
Theorem (Linear reducibility)

1) 3 equivalent W' s.t. [|[W]|s < N, 2) asymptotically optimal

Theorem ()

1) 3 equivalent f s.t. fi.. < (n*N)"N, 2) asymptotically optimal

THE EXTRAS: STRONGLY-POLY ALGORITHM

Goal: Strongly-polynomial algorithm (#arithmetic ops not dep on size of numbers)

1. Solve LP relaxation in poly(n - (A)) time [Tardos '86]
2. Proximity: int opt not far from frac opt = shrink bounds U, u’, shrink rhs b’.
3. Reduce objective: U, u’ give small box = equiv. W' w/ small [|wW'||s

4. Convergence: 3n{A,w', b’ l',u’y = poly(n - (A)) halflings reach optimum.

THE EXTRAS: STRONGLY-POLY ALGORITHM

Goal: Strongly-polynomial algorithm (#arithmetic ops not dep on size of numbers)

1. Solve LP relaxation in poly(n - (A)) time [Tardos '86]
2. Proximity: int opt not far from frac opt = shrink bounds U, u’, shrink rhs b’.
3. Reduce objective: U, u’ give small box = equiv. W' w/ small [|wW'||s

4. Convergence: 3n{A,w', b’ l',u’y = poly(n - (A)) halflings reach optimum.

THE EXTRAS: STRONGLY-POLY ALGORITHM

Goal: Strongly-polynomial algorithm (#arithmetic ops not dep on size of numbers)

1. Solve LP relaxation in poly(n - (A)) time [Tardos '86]
2. Proximity: int opt not far from frac opt = shrink bounds U, u’, shrink rhs b’.
3. Reduce objective: U',u’ give small box = equiv. w' w/ small [|w'||o

4. Convergence: 3n{A,w', b’ l',u’y = poly(n - (A)) halflings reach optimum.

THE EXTRAS: STRONGLY-POLY ALGORITHM

Goal: Strongly-polynomial algorithm (#arithmetic ops not dep on size of numbers)

=

. Solve LP relaxation in poly(n - (A)) time [Tardos '86]
2. Proximity: int opt not far from frac opt = shrink bounds U, u’, shrink rhs b’.

3. Reduce objective: U, u’ give small box = equiv. W' w/ small [|wW'||s

4. Convergence: 3n{A,w’, b’ l',u’y = poly(n - (A)) halflings reach optimum.

THE EXTRAS: STRONGLY-POLY ALGORITHM

Goal: Strongly-polynomial algorithm (#arithmetic ops not dep on size of numbers)

1. Solve LP relaxation in poly(n - (A)) time [Tardos '86]
2. Proximity: int opt not far from frac opt = shrink bounds U, u’, shrink rhs b’.
3. Reduce objective: U, u’ give small box = equiv. W' w/ small [|wW'||s
4. Convergence: 3n{A,w', b’ l',u’y = poly(n - (A)) halflings reach optimum.
Theorem
ILP solvable in time g(min{tdp(A), tdp(A)}, ||Alls) POLY(N).

THE EXTRAS: NEAR-LINEAR ALGORITHMS

Goal: Improve n? to n poly log n.

THE EXTRAS: NEAR-LINEAR ALGORITHMS

Goal: Improve n? to n poly log n.
Small tdp(A)

- Replace halflings with a more expensive, more powerful steps
= Goo(A) - log fmax Steps convergence (instead of n - log finax)

- Need all tricks to smooth remaining issues (proximity-scaling, reducibility, ...)

THE EXTRAS: NEAR-LINEAR ALGORITHMS

Goal: Improve n? to n poly log n.
Small tdp(A)

- Replace halflings with a more expensive, more powerful steps
= Goo(A) - log fmax Steps convergence (instead of n - log finax)

- Need all tricks to smooth remaining issues (proximity-scaling, reducibility, ...)
Small tdp(A)

- @: since g1(A) small, only few coordinates of x changed in each step

- = construct a data structure computing (AuglP) which updates in log n time
after a halfling step

THE EXTRAS: NEAR-LINEAR ALGORITHMS

Goal: Improve n? to n poly log n.
Small tdp(A)

- Replace halflings with a more expensive, more powerful steps
= Goo(A) - log fmax Steps convergence (instead of n - log finax)

- Need all tricks to smooth remaining issues (proximity-scaling, reducibility, ...)
Small tdp(A)

- @: since g1(A) small, only few coordinates of x changed in each step

- = construct a data structure computing (AuglP) which updates in log n time
after a halfling step

Theorem ((more or less))
(IP) solvable in time g(min{tdp(A), tdp(A)}, |Allsc)N 10g®™) nlog [|u —]| 108 frmax-

OuTLOOK

OuTLOOK

An Algorithmic Theory of Integer Programming [arxiv:1904.01361]
Don't be afraid of the paper!

OuTLOOK

An Algorithmic Theory of Integer Programming [arxiv:1904.01361]
Don't be afraid of the paper!

- Other results:
- ETH-based lower bounds
- Applications: scheduling, bin packing, computational social choice, ...

OuTLOOK

An Algorithmic Theory of Integer Programming [arxiv:1904.01361]
Don't be afraid of the paper!

- Other results:
- ETH-based lower bounds
- Applications: scheduling, bin packing, computational social choice, ...

- New directions:
- Mixed-integer? Yes when f(x) = wx, sep-convex open.

OuTLOOK

An Algorithmic Theory of Integer Programming [arxiv:1904.01361]
Don't be afraid of the paper!

- Other results:
- ETH-based lower bounds
- Applications: scheduling, bin packing, computational social choice, ...

- New directions:
- Mixed-integer? Yes when f(x) = wx, sep-convex open.
- Implementation: DP is the main obstacle. We need help!

OuTLOOK

An Algorithmic Theory of Integer Programming [arxiv:1904.01361]
Don't be afraid of the paper!

- Other results:

- ETH-based lower bounds

- Applications: scheduling, bin packing, computational social choice, ...
- New directions:

- Mixed-integer? Yes when f(x) = wx, sep-convex open.

- Implementation: DP is the main obstacle. We need help!

- Row-invariant parameters: branch-depth, ..?

OuTLOOK

An Algorithmic Theory of Integer Programming [arxiv:1904.01361]
Don't be afraid of the paper!

- Other results:

- ETH-based lower bounds

- Applications: scheduling, bin packing, computational social choice, ...
- New directions:

- Mixed-integer? Yes when f(x) = wx, sep-convex open.

- Implementation: DP is the main obstacle. We need help!

- Row-invariant parameters: branch-depth, ..?

|

Thank you! §

	Outline
	Integer Programming: Structural Parameterizations
	The Theory: Iterative Augmentation
	The Extras
	Outlook

