Uživatelské nástroje

Nástroje pro tento web


teaching:intro_par_alg2526

Rozdíly

Zde můžete vidět rozdíly mezi vybranou verzí a aktuální verzí dané stránky.

Odkaz na výstup diff

Obě strany předchozí revizePředchozí verze
teaching:intro_par_alg2526 [2025/11/04 22:36] – [Material Covered] Martin Kouteckyteaching:intro_par_alg2526 [2025/11/10 15:10] (aktuální) Martin Koutecky
Řádek 18: Řádek 18:
 | 27. 10. | Intro to neighborhood diversity and ILPs. Solving <typo fv:small-caps>Coloring</typo> on graphs of bounded $nd(G)$. **[ND, NdCol, 5M]**| | 27. 10. | Intro to neighborhood diversity and ILPs. Solving <typo fv:small-caps>Coloring</typo> on graphs of bounded $nd(G)$. **[ND, NdCol, 5M]**|
 | 3. 11. | Neighborhood diversity: <typo fv:small-caps>Sum Coloring</typo> as a convex IP in small dimension, and later as $n$-fold IP **[5M, Thm 2(a), 2(b)]**; <typo fv:small-caps>Capacitated Dominating Set</typo>  as small-dim IP with convex constraints. **[5M, Thm 1]**| | 3. 11. | Neighborhood diversity: <typo fv:small-caps>Sum Coloring</typo> as a convex IP in small dimension, and later as $n$-fold IP **[5M, Thm 2(a), 2(b)]**; <typo fv:small-caps>Capacitated Dominating Set</typo>  as small-dim IP with convex constraints. **[5M, Thm 1]**|
 +| 10. 11. | $P/Q/R||C_{\max}$ via $n$-fold IP recap. How does the FPT $n$-fold IP algo work (birds-eye view). Borda-<typo fv:small-caps>Shift Bribery</typo> is FPT($m$) via $n$-fold IP.|
  
 /* /*
teaching/intro_par_alg2526.1762295786.txt.gz · Poslední úprava: autor: Martin Koutecky