Uživatelské nástroje

Nástroje pro tento web


teaching:intro_par_alg2526

Rozdíly

Zde můžete vidět rozdíly mezi vybranou verzí a aktuální verzí dané stránky.

Odkaz na výstup diff

Obě strany předchozí revizePředchozí verze
Následující verze
Předchozí verze
teaching:intro_par_alg2526 [2025/10/20 13:15] – [Material Covered] Jiří Fialateaching:intro_par_alg2526 [2025/11/10 15:10] (aktuální) Martin Koutecky
Řádek 15: Řádek 15:
 | 6. 10. | Kernelization **[PA 2.1, 2.2.1, 2.3-intro, 2.3.1]**. Crown decomposition lemma proof was from **[Ker, Lemma 4.5]**| | 6. 10. | Kernelization **[PA 2.1, 2.2.1, 2.3-intro, 2.3.1]**. Crown decomposition lemma proof was from **[Ker, Lemma 4.5]**|
 | 13. 10. | Bounded Search Trees: <typo fv:small-caps>Vertex Cover</typo> in $\mathcal{O}^*(1.6181^k)$ and $\mathcal{O}^*(1.4656^k)$ time; <typo fv:small-caps>Closest String</typo> in $\mathcal{O}^*(d^d)$ time **[PA 3.1, 3.5]** | | 13. 10. | Bounded Search Trees: <typo fv:small-caps>Vertex Cover</typo> in $\mathcal{O}^*(1.6181^k)$ and $\mathcal{O}^*(1.4656^k)$ time; <typo fv:small-caps>Closest String</typo> in $\mathcal{O}^*(d^d)$ time **[PA 3.1, 3.5]** |
-| 20. 10. | FPT algorithms <typo fv:small-caps>Feedback Vertex Set</typo> in $\mathcal{O}^*((3k)^k)$ time and for <typo fv:small-caps>Vertex Cover above LP **[PA 3.4]**</typo>,+| 20. 10. | FPT algorithms for <typo fv:small-caps>Feedback Vertex Set</typo> in $\mathcal{O}^*((3k)^k)$ time and for <typo fv:small-caps>Vertex Cover above LP in $\mathcal{O}^*(4^d)$ **[PA 3.3, 3.4]**</typo>
-/*| 29. 10. | Iterative Compression for <typo fv:small-caps>Vertex Cover</typo>, <typo fv:small-caps>Feedback Vertex Set</typo> and <typo fv:small-caps>Odd Cycle Transversal</typo>, **[PA 4.1, 4.3.1, 4.4]** |+| 27. 10. | Intro to neighborhood diversity and ILPs. Solving <typo fv:small-caps>Coloring</typo> on graphs of bounded $nd(G)$. **[NDNdCol, 5M]**
 +| 3. 11. | Neighborhood diversity: <typo fv:small-caps>Sum Coloring</typo> as a convex IP in small dimension, and later as $n$-fold IP **[5M, Thm 2(a), 2(b)]**; <typo fv:small-caps>Capacitated Dominating Set</typo>  as small-dim IP with convex constraints. **[5M, Thm 1]**| 
 +| 10. 11. | $P/Q/R||C_{\max}$ via $n$-fold IP recap. How does the FPT $n$-fold IP algo work (birds-eye view). Borda-<typo fv:small-caps>Shift Bribery</typo> is FPT($m$) via $n$-fold IP.| 
 + 
 +/* 
 + 
 +| 17. 12. | Plan: Neighborhood diversity: Q&A on <typo fv:small-caps>Sum Coloring</typo> **[5M, Thm 2]**, ; <typo fv:small-caps>Max $q$-Cut</typo> **[5M, Thm 3]**. [[https://www.geogebra.org/calculator/pfdttsng|Geogebra: $x \cdot y$ is obviously not convex.]]| 
 + 
 +| 29. 10. | Iterative Compression for <typo fv:small-caps>Vertex Cover</typo>, <typo fv:small-caps>Feedback Vertex Set</typo> and <typo fv:small-caps>Odd Cycle Transversal</typo>, **[PA 4.1, 4.3.1, 4.4]** |
 | 5. 11. | //sport day - no class//| | 5. 11. | //sport day - no class//|
 | 12. 11. | Dynamic programming and convolutions on <typo fv:small-caps>Set Cover</typo> and <typo fv:small-caps>Steiner Tree</typo> **[PA 6.1]**, PIE and <typo fv:small-caps>Hamiltonian Cycle</typo> **[PA 10.1.1]** | | 12. 11. | Dynamic programming and convolutions on <typo fv:small-caps>Set Cover</typo> and <typo fv:small-caps>Steiner Tree</typo> **[PA 6.1]**, PIE and <typo fv:small-caps>Hamiltonian Cycle</typo> **[PA 10.1.1]** |
teaching/intro_par_alg2526.1760966101.txt.gz · Poslední úprava: autor: Jiří Fiala