
Integer Programming Notes / Winter 22/23

MARTIN KOUTECKÝ, Charles University, Czech Republic

1 INTEGER PROGRAMMING IN GENERAL
Our focus is on the integer (linear) programming problem in standard form

min {𝑓 (x) | 𝐴x = b, l ≤ x ≤ u, x ∈ Z𝑛} , and (IP)

min {wx | 𝐴x = b, l ≤ x ≤ u, x ∈ Z𝑛} , (ILP)

with 𝐴 an integer 𝑚 × 𝑛 matrix, 𝑓 : R𝑛 → R a separable convex function, b ∈ Z𝑚 , and l, u ∈
(Z ∪ {±∞})𝑛 . (IP) is well-known to be strongly NP-hard already in the special case (ILP) when

𝑓 (x) = wx is a linear objective function for some vector w ∈ Z𝑛 . (E.g. it is easy to encode Vertex

Cover as ILP.) In this course, we will cover some important, broad, natural, and useful conditions

under which (IP) can be solved in polynomial time.

Notation
We write vectors in boldface (e.g., x, y) and their entries in normal font (e.g., the 𝑖-th entry of x
is 𝑥𝑖). For positive integers𝑚 ≤ 𝑛 we set [𝑚,𝑛] := {𝑚, . . . , 𝑛} and [𝑛] := [1, 𝑛], and we extend this

notation for vectors: for l, u ∈ Z𝑛 with l ≤ u, [l, u] := {x ∈ Z𝑛 | l ≤ x ≤ u}. If 𝐴 is a matrix, 𝐴𝑖, 𝑗
denotes the 𝑗-th coordinate of the 𝑖-th row, 𝐴𝑖,• denotes the 𝑖-th row and 𝐴•, 𝑗 denotes the 𝑗-th
column. We use log := log

2
. For an integer 𝑎 ∈ Z, we denote by ⟨𝑎⟩ := 1 + ⌈log(|𝑎 | + 1)⌉ the binary

encoding length of 𝑎; we extend this notation to vectors, matrices and tuples of these objects. For

example, ⟨𝐴, b⟩ = ⟨𝐴⟩ + ⟨b⟩, and ⟨𝐴⟩ = ∑
𝑖, 𝑗 ⟨𝐴𝑖, 𝑗 ⟩.

2 FIXED DIMENSION
(IP) can be solved in time 𝑔(𝑛)𝑝𝑜𝑙𝑦 (𝑛, 𝐿) for some function 𝑔, and this goes back to the work of

Lenstra [17]. The best current bound is 𝑔(𝑛) = O(𝑛)𝑛 and is due to Dadush [3]. The algorithm even

applies to the case where 𝑓 is general convex (non-separable), and where x belongs to some convex

body 𝐾 ⊆ R𝑛 .
We will sketch the main ideas of the proof, but don’t pretend to give all details. Define the width

of 𝐾 along a direction d ∈ Z𝑛 to be

𝑤d (𝐾) = max{dx | x ∈ 𝐾} −min{dx | x ∈ 𝐾} .

If the max or min does not exist, we define the width to be infinity. The width of 𝐾 is defined as the

smallest width over all non-zero directions; notice that we are taking the directions over all integer

vectors in order to avoid silly issues like being able to get very small width by taking very small

(non-integral) d:
𝑤 (𝐾) = min

d∈Z𝑑\{0}
𝑤d (𝐾) .

A d which attains the minimum above is called a flat direction of 𝐾 . The algorithm relies on the

following deep and famous result:

Proposition 1 (Khinchine’s Flatness Theorem). Let 𝐾 ⊆ R𝑛 be a convex body. Then either

𝐾 contains a lattice point (i.e., 𝐾 ∩ Z𝑛 ≠ ∅), or 𝑤 (𝐾) ≤ 𝜔 (𝑛) where 𝜔 (𝑛) is some constant only

depending on 𝑛.

Author’s address: Martin Koutecký, Charles University, Prague, Czech Republic, koutecky@iuuk.mff.cuni.cz.

2 M. Koutecký

(It could be that 𝐾 is flat and contains an integer point, and this doesn’t bother us.)

We focus on solving feasibility, that is, deciding𝐾∩Z𝑛 ≠ ∅; optimization can be handled by doing

a binary search over the objective and then adding this objective bound into the set of constraints.

Specifically, if our guess on the objective is 𝑇 , we want to enforce a constraint 𝑓 (x) ≤ 𝑇 , and
because 𝑓 is convex, this is a convex constraint and thus 𝐾 ′ = 𝐾 ∩ {x | 𝑓 (x) ≤ 𝑇 } is a convex set
and we solve feasibility for 𝐾 ′ instead of optimization over 𝐾 .

The main idea of the algorithm is this. We compute a flat direction d of 𝐾 (which is not an easy

problem but is known to be doable so we treat it here as an oracle call). If we see that𝑤 (𝐾) > 𝜔 (𝑛),
we know that 𝐾 contains an integer point and we are done. Otherwise,𝑤 (𝐾) ≤ 𝜔 (𝑛). This means

we can branch into at most 𝜔 (𝑛) lower-dimensional slices of 𝐾 and solve the problem inductively

in each of them. Because the dimension drops by at least one in each branching, the branching tree

has at most 𝑛 levels, and because we branch into at most 𝜔 (𝑛) slices, the degree of the tree is at
most 𝜔 (𝑛), so altogether the tree has at most 𝜔 (𝑛)𝑛 nodes.

What does this branching look like in detail? If 𝐾 contains an integer point, then it must lie on

one of the hyperplanes

dx = 𝛿, where 𝛿 ∈ [min{dx | x ∈ 𝐾},max{dx | x ∈ 𝐾}] .

The rest of the work is that we need to transform the set 𝐾 ∩ {x | dx = 𝛿} which is less than

𝑛-dimensional but lives in 𝑛 dimensions into a set 𝐾 ′ ⊆ R𝑛−1
which is integer feasible iff 𝐾 is, and

then call the algorithm on 𝐾 ′.

3 VARIABLE DIMENSION
Some more preliminaries are in order now.

For a function 𝑓 : Z𝑛 → Z and two vectors l, u ∈ Z𝑛 , we define 𝑓 [l,u]
max

:= maxx,x′∈[l,u] |𝑓 (x)−𝑓 (x′) |;
if [l, u] is clear from the context we omit it and write just 𝑓max. We assume that 𝑓 : R𝑛 → R is a

separable convex function, i.e., it can be written as 𝑓 (x) = ∑𝑛
𝑖=1

𝑓𝑖 (𝑥𝑖) where 𝑓𝑖 is a convex function
of one variable, for each 𝑖 ∈ [𝑛]. Moreover, we require that for each x ∈ Z𝑛 , 𝑓 (x) ∈ Z. We assume

𝑓 is given by a comparison oracle. We use 𝜔 to denote the smallest number such that matrix

multiplication of 𝑛 ×𝑛 matrices can be performed in time O(𝑛𝜔). We say that a system of equations

𝐴x = b is pure if the rows of 𝐴 are linearly independent. The next statement follows easily by

Gaussian elimination, hence we assume𝑚 ≤ 𝑛 throughout the paper.

Proposition 2 (Purification [11, Theorem 1.4.8]). Given𝐴 ∈ Z𝑚×𝑛 and b ∈ Z𝑚 one can in time

O(min{𝑛,𝑚}𝑛𝑚) either declare 𝐴x = b infeasible, or output a pure equivalent subsystem 𝐴′x = b′.

The goal of this section is to prove the following theorem:

Theorem 3. There is a computable function 𝑔 such that (IP) can be solved in time

𝑔(∥𝐴∥∞,min{td𝑃 (𝐴), td𝐷 (𝐴)}) · 𝑛2
log ∥u − l, b∥∞ log (2𝑓max) + O(𝑛𝜔 ⟨𝐴⟩)

In Sections 3.1-3.2 we shall develop the necessary ingredients to prove this theorem. Then, we

will conclude in Section 3.7 by providing its proof which puts these ingredients together.

3.1 Introduction to Iterative Augmentation
Let us introduce Graver bases and discuss how they are used for optimization. We define a partial

order ⊑ on R𝑛 as follows: for x, y ∈ R𝑛 we write x ⊑ y and say that x is conformal to y if, for each

𝑖 ∈ [𝑛], 𝑥𝑖𝑦𝑖 ≥ 0 (that is, x and y lie in the same orthant) and |𝑥𝑖 | ≤ |𝑦𝑖 |. For a matrix 𝐴 ∈ Z𝑚×𝑛
we write kerZ (𝐴) = {x ∈ Z𝑛 | 𝐴x = 0}. It is well known that every subset of Z𝑛 has finitely many

⊑-minimal elements [9].

Integer Programming Notes / Winter 22/23 3

Definition 4 (Graver basis [10]). The Graver basis of an integer𝑚 × 𝑛 matrix 𝐴 is the finite set

G(𝐴) ⊂ Z𝑛 of ⊑-minimal elements in kerZ (𝐴) \ {0}.

One important property of G(𝐴) is as follows:

Lemma 5 (Positive Sum Property [18, Lemma 3.4]). Let 𝐴 ∈ Z𝑚×𝑛 . For any x ∈ kerZ (𝐴), there
exists an 𝑛′ ≤ 2𝑛−1 and a decomposition x =

∑𝑛′
𝑗=1
𝜆 𝑗g𝑗 with 𝜆 𝑗 ∈ N and g𝑗 ∈ G(𝐴) for each 𝑗 ∈ [𝑛′],

and with g𝑗 ⊑ x, i.e., all g𝑗 belonging to the same orthant as x.

Proof. Let 𝐺 be a matrix whose columns are g ∈ G(𝐴) such that g ⊑ x. Consider the following
LP in variables y ∈ R |𝐺 | :

max

∑︁
g
𝑦g

𝐺y = x
y ≥ 0

There is a basic optimal solution y∗ and from LP theory we know that, because there are 𝑛 equality

constraints and only non-negativity constraints besides that, | supp(y∗) | ≤ 𝑛. We will define the

coefficient vector 𝝀 in two phases. In the first phase, let 𝝀 = ⌊y∗⌋. Recall that {y∗} is the fractional
part of y∗. Observe that𝐺{y∗} is an integer vector, because it is𝐺y∗−𝐺 ⌊y∗⌋ which is a difference of

two integer vectors. Thus, {y∗} describes a decomposition of x̄ := x −𝐺 ⌊y∗⌋ ∈ KerZ (𝐴). Moreover,

{y∗} is a decomposition maximizing the ℓ1-norm, which is the objective of the above LP. (The fact

that {y∗} is a fractional decomposition of x̄ maximizing ℓ1-norm is easy to see by contradiction: if

there was a better decomposition y′ of x̄, one could use it to get a better decomposition y′+ ⌊y∗⌋ of x,
but y∗ was assumed to be maximum.) Finally, we have that ∥{y∗}∥1 < 𝑛 because it is a sum of at most

𝑛 numbers, each strictly smaller than 1. Now consider an optimal integer decomposition of x̄, i.e., a
non-negative vector ȳ ∈ Z𝑛 satisfying𝐺 ȳ = x̄. It cannot have a larger ℓ1-norm than {y∗} because
{y∗} is an optimum of the continuous relaxation, thus ∥ȳ∥1 ≤ ∥{y∗}∥1 < 𝑛, that is, ∥ȳ∥1 ≤ 𝑛 − 1.

This is the second phase: update 𝝀: = 𝝀 + ȳ. We have | supp(𝝀) | ≤ | supp(y∗) | + | supp(ȳ) | ≤
𝑛 + (𝑛 − 1) = 2𝑛 − 1. □

In fact, the Lemma holds with a better constant 2𝑛 − 2, and we will use this bound in the sequel,

although this has no asymptotic significance for us.

Proposition 6 (Positive Sum Property [18, Lemma 3.4]). For any x ∈ kerZ (𝐴), there exists an
𝑛′ ≤ 2𝑛 − 2 and a decomposition x =

∑𝑛′
𝑗=1
𝜆 𝑗g𝑗 with 𝜆 𝑗 ∈ N and g𝑗 ∈ G(𝐴) for each 𝑗 ∈ [𝑛′], and

with g𝑗 ⊑ x, i.e., all g𝑗 belonging to the same orthant as x.

We say that x ∈ Z𝑛 is feasible for (IP) if 𝐴x = b and l ≤ x ≤ u. Let x be a feasible solution for (IP).

We call g a feasible step if x + g is feasible for (IP). Further, call a feasible step g augmenting if

𝑓 (x + g) < 𝑓 (x). An important implication of Proposition 6 is that if any augmenting step exists,

then there exists one in G(𝐴) [4, Lemma 3.3.2].

An augmenting step g and a step length 𝜆 ∈ N form an x-feasible step pair with respect to x if

l ≤ x + 𝜆g ≤ u. An augmenting step h is a Graver-best step for x if 𝑓 (x + h) ≤ 𝑓 (x + 𝜆g) for all
x-feasible step pairs (g, 𝜆) ∈ G(𝐴) × N. A slight relaxation of a Graver-best step is a halfling: an

augmenting step h is a halfling for x if 𝑓 (x) − 𝑓 (x+ h) ≥ 1

2
(𝑓 (x) − 𝑓 (x+ 𝜆g)) for all x-feasible step

pairs (g, 𝜆) ∈ G(𝐴) × N. A halfling augmentation procedure for (IP) with a given feasible solution

x0 works as follows. Let 𝑖 := 0.

(1) If there is no halfling for x𝑖 , return it as optimal.

(2) If a halfling h𝑖 for x𝑖 exists, set x𝑖+1 := x𝑖 + h𝑖 , 𝑖 := 𝑖 + 1, and go to 1.

4 M. Koutecký

We assume that the bounds l, u are finite.

Lemma 7 (Halfling convergence). Given a feasible solution x0 for (IP), the halfling augmentation

procedure finds an optimum of (IP) in at most 3𝑛 log (𝑓 (x0) − 𝑓 (x∗)) ≤ 3𝑛 log

(
𝑓
[l,u]

max

)
steps.

Before we prove the lemma we need a useful proposition about separable convex functions:

Proposition 8 (Separable convex superadditivity [4, Lemma 3.3.1]). Let 𝑓 (x) = ∑𝑛
𝑖=1

𝑓𝑖 (𝑥𝑖)
be separable convex, let x ∈ R𝑛 , and let g

1
, . . . , g𝑘 ∈ R𝑛 be vectors that are pairwise conformal. Then

𝑓

(
x +

𝑘∑︁
𝑗=1

𝛼 𝑗g𝑗

)
− 𝑓 (x) ≥

𝑘∑︁
𝑗=1

𝛼 𝑗

(
𝑓 (x + g𝑗) − 𝑓 (x)

)
(1)

for arbitrary integers 𝛼1, . . . , 𝛼𝑘 ∈ N.

The essence of this proposition is that if multiple steps take us from x0 to x∗, then the sum of

their improvements considered individually with respect to x0 is at least the improvement when

we take them together, i.e., the difference 𝑓 (x) − 𝑓 (x∗). (This is tricky to read correctly because

“improvement” is a negative term, because we are minimizing.) An illustrative example is 𝑓 (𝑥) = 𝑥2
:

if we are at a point 𝑥 = 2, then moving by 1 closer to the origin improves the objective by 3 (decrease

from 4 to 1), but moving by another 1 only improves it by 1 (decrease from 1 to 0). So if we think of

the path from 2 to 0 as two steps by 1, when we consider the total of the progress each step would

achieve individually with respect to the initial point 2, we get 3 + 3 = 6, but taken together, the

steps only achieve the progress of 4. Essentially, the contribution of each step considered in the

sequence is at most the contribution of each step considered individually with respect to the initial

point.

Proof of Lemma 7. Let x∗ be an optimal solution of (IP). By Proposition 6 wemaywrite x∗−x0 =∑𝑛′
𝑗=1
𝜆 𝑗g𝑗 such that g𝑗 ⊑ x∗ − x0 for all 𝑗 ∈ [𝑛′], and 𝑛′ ≤ 2𝑛 − 2. We apply Proposition 8 to x0 and

the 𝑛′ vectors 𝜆 𝑗g𝑗 with 𝛼 𝑗 := 1, so by (1) we have

0 ≥ 𝑓 (x∗) − 𝑓 (x0) = 𝑓
(
x0 +

𝑛′∑︁
𝑗=1

𝜆 𝑗g𝑗

)
− 𝑓 (x0) ≥

𝑛′∑︁
𝑗=1

(
𝑓 (x0 + 𝜆 𝑗g𝑗) − 𝑓 (x0)

)
,

and multiplying by −1 gives 0 ≤ 𝑓 (x0) − 𝑓 (x∗) ≤
∑𝑛′
𝑗=1
(𝑓 (x0) − 𝑓 (x0 + 𝜆 𝑗g𝑗)). By an averaging

argument, there must exist an index ℓ ∈ [𝑛′] such that

𝑓 (x0) − 𝑓 (x0 + 𝜆ℓgℓ) ≥
1

𝑛′
(𝑓 (x0) − 𝑓 (x∗)) ≥

1

𝑛′
𝑓max . (2)

Consider a halfling h for x0: by definition, it satisfies 𝑓 (x0) − 𝑓 (x0 + h) ≥ 1

2
(𝑓 (x0) − 𝑓 (x0 + 𝜆𝑖g𝑖)).

Say that the halfling augmentation procedure required 𝑠 iterations. For 𝑖 ∈ [𝑠 − 1] we have that

𝑓 (x𝑖) − 𝑓 (x∗) ≤
(
1 − 1

4𝑛 − 4

)
(𝑓 (x𝑖−1) − 𝑓 (x∗)) =

4𝑛 − 5

4𝑛 − 4

(𝑓 (x𝑖−1) − 𝑓 (x∗))

and, by repeated application of the above,

𝑓 (x𝑖) − 𝑓 (x∗) ≤
(

4𝑛 − 5

4𝑛 − 4

)𝑖
(𝑓 (x0) − 𝑓 (x∗)) .

Integer Programming Notes / Winter 22/23 5

Since 𝑖 is not the last iteration, 𝑓 (x𝑖) − 𝑓 (x∗) ≥ 1 by the integrality of 𝑓 . Take 𝑡 := 4𝑛 − 4 and

compute

1 ≤
(
𝑡 − 1

𝑡

)𝑖
(𝑓 (x0) − 𝑓 (x∗)) / ln(·)

0 ≤ 𝑖 ln

(
𝑡 − 1

𝑡

)
+ ln (𝑓 (x0) − 𝑓 (x∗)) / −𝑖 ln

(
𝑡 − 1

𝑡

)
−𝑖 ln

(
𝑡 − 1

𝑡

)
= 𝑖 ln

(𝑡

𝑡 − 1

)
≤ ln (𝑓 (x0) − 𝑓 (x∗)) / : ln

(
𝑡 − 1

𝑡

)
𝑖 ≤

(
ln

(𝑡

𝑡 − 1

))−1

ln (𝑓 (x0) − 𝑓 (x∗))

Now Taylor expansion gives for 𝑡 ≥ 3

ln

(
1 + 1

𝑡 − 1

)
≥ 1

𝑡 − 1

− 1

2(𝑡 − 1)2 =
2𝑡 − 3

2𝑡2 − 4𝑡 + 2

,

so (
ln

(
1 + 1

𝑡 − 1

))−1

≤ 2𝑡2 − 4𝑡 + 2

2𝑡 − 3

,

which is bounded above by 𝑡 for all 𝑡 ≥ 2 since 𝑡 (2𝑡 − 3) = 2𝑡2 − 3𝑡 ≥ 2𝑡2 − 4𝑡 + 2 for all 𝑡 ≥ 2.

Plugging back 𝑡 := 4𝑛 − 4 we get that for all 𝑛 ≥ 2 we have 𝑡 ≥ 3 and hence

𝑖 ≤ (4𝑛 − 4) ln (𝑓 (x0) − 𝑓 (x∗)) = (4𝑛 − 4) · ln 2 · log
2
(𝑓 (x0) − 𝑓 (x∗)) ,

and the number of iterations is at most one unit larger. Since 𝑓 (x0) − 𝑓 (x∗) ≤ 𝑓max and ln(2) =
0.693147 · · · ≤ 3/4, we have that the number of iterations is at most 3𝑛 log(𝑓max). □

Clearly it is now desirable to show how to find halflings quickly. The following lemma will be

helpful in that regard.

Lemma 9 (Powers of Two). Let Γ2 = {1, 2, 4, 8, . . . } and x be a feasible solution of (IP). If h satisfies

𝑓 (x + h) ≤ 𝑓 (x + 𝜆g) for each x-feasible step pair (g, 𝜆) ∈ G(𝐴) × Γ2, then h is a halfling.

Proof. Consider any Graver-best step pair (g∗, 𝜆∗) ∈ G(𝐴) × N, let 𝜆 := 2
⌊log𝜆∗ ⌋

, and choose

1

2
< 𝛾 ≤ 1 in such a way that 𝜆 = 𝛾𝜆∗. Convexity of 𝑓 yields

𝑓 (x0) − 𝑓 (x0 + 𝜆g∗) ≥ 𝑓 (x0) − [(1 − 𝛾) 𝑓 (x0) + 𝛾 𝑓 (x0 + 𝜆∗g∗)]
= 𝛾 (𝑓 (x0) − 𝑓 (x0 + 𝜆∗g∗))

≥ 1

2

(𝑓 (x0) − 𝑓 (x0 + 𝜆∗g∗)) .

This shows that 𝜆g∗ is a halfling, and by the definition of h, 𝑓 (x + h) ≤ 𝑓 (x + 𝜆g∗) and thus h is a

halfling as well. □

This makes it clear that the main task is to find, for each 𝜆 ∈ Γ2, a step h which is at least as good

as any feasible 𝜆g with g ∈ G(𝐴). We need the notion of a best solution:

Definition 10 (𝑆-best solution). Let 𝑆, 𝑃 ⊆ R𝑛 . We say that x∗ ∈ 𝑃 is a solution of

𝑆-best {𝑓 (x) | x ∈ 𝑃} (𝑆-best)

if 𝑓 (x∗) ≤ min{𝑓 (x) | x ∈ 𝑃 ∩ 𝑆}. If 𝑃 ∩ 𝑆 is empty, we say 𝑆-best {𝑓 (x) | x ∈ 𝑃} has no solution.

6 M. Koutecký

In other words, x∗ has to belong to 𝑃 and be at least as good as any point in 𝑃 ∩ 𝑆 . Note that to
define the notion of an 𝑆-best solution to be a “no solution” if 𝑃 ∩ 𝑆 = ∅ might look unnatural as

one might require any x ∈ 𝑃 if 𝑃 ∩ 𝑆 = ∅. However, this would make (𝑆-best) as hard as finding

some x ∈ 𝑃 (just take 𝑆 = ∅), but intuitively (𝑆-best) should be an easier problem. The following is

a central notion.

Definition 11 (Augmentation IP). For an (IP) instance (𝐴, 𝑓 , b, l, u), its feasible solution x ∈ Z𝑛 ,
and an integer 𝜆 ∈ N, the Augmentation IP problem is to solve

G(𝐴)-best{𝑓 (x + 𝜆g) | 𝐴g = 0, l ≤ x + 𝜆g ≤ u, g ∈ Z𝑛} . (AugIP)

Let (𝐴, 𝑓 , b, l, u) be an instance of (IP), x a feasible solution, and 𝜆 ∈ N. We call the pair (x, 𝜆)
an (AugIP) instance for (𝐴, 𝑓 , b, l, u). If clear from the context, we omit the (IP) instance (𝐴, 𝑓 , b, l, u).

By Lemma 9 we obtain a halfling by solving (AugIP) for each 𝜆 ∈ Γ2 and picking the best solution.

Given an initial feasible solution x0 and a fast algorithm for (AugIP), we can solve (IP) quickly:

Lemma 12 (((AugIP) and x0) =⇒ (IP)). Given an initial feasible solution x0 to (IP), (IP) can be

solved by solving

3𝑛(log ∥u − l∥∞ + 1) log(𝑓 (x0) − 𝑓 (x∗)) ≤ 3𝑛(log ∥u − l∥∞ + 1) log

(
𝑓
[l,u]

max

)
instances of (AugIP), where x∗ is any optimum of (IP).

Proof. Observe that no 𝜆 ∈ Γ2 = {1, 2, 4, . . . } greater than ∥u − l∥∞ results in a non-zero

x-feasible step pair. Thus, by Lemma 9, to compute a halfling for x it suffices to solve (AugIP)

for all 𝜆 ∈ Γ2, 𝜆 ≤ ∥u − l∥∞, and there are at most log ∥u − l∥∞ + 1 of these. By Lemma 7,

3𝑛 log (𝑓 (x0) − 𝑓 (x∗)) ≤ 3𝑛 log (𝑓max) halfling augmentations suffice and we are done. □

Feasibility. Our goal now is to satisfy the requirement of an initial solution x0.

Lemma 13 ((AugIP) =⇒ x0). Given an instance of (IP), it is possible to compute a feasible solution

x0 for (IP) or decide that (IP) is infeasible by solving O(𝑛 log(∥𝐴, b, l, u∥∞)2) many (AugIP) instances,

plus O(𝑛𝜔) time needed to compute an integral solution of 𝐴z = b. Moreover, ⟨x0⟩ ≤ poly⟨b⟩.

Proof. We first compute an integer solution to the system of equations𝐴z = b. This can be done

by computing the Hermite normal form of 𝐴 in time O(𝑛𝜔−1𝑚) ≤ O(𝑛𝜔) [22] (using𝑚 ≤ 𝑛). Then
either we conclude that there is no integer solution to 𝐴z = b and hence (IP) is infeasible, or we

find a solution z ∈ Z𝑛 with encoding length polynomially bounded in the encoding length of 𝐴, b.
Next, we will solve an auxiliary IP. Define new relaxed bounds by

ˆ𝑙𝑖 := min{𝑙𝑖 , 𝑧𝑖 }, 𝑢𝑖 := max{𝑢𝑖 , 𝑧𝑖 }, 𝑖 ∈ [𝑛],

and define an objective function
ˆ𝑓 :=

∑𝑛
𝑖=1

ˆ𝑓𝑖 as, for each 𝑖 ∈ [𝑛], ˆ𝑓𝑖 (𝑥𝑖) := dist(𝑥𝑖 , [𝑙𝑖 , 𝑢𝑖]), which is

0 if 𝑥𝑖 ∈ [𝑙𝑖 , 𝑢𝑖] and max{𝑙𝑖 − 𝑥𝑖 , 𝑥𝑖 − 𝑢𝑖 } otherwise. This function has at most three linear pieces,

the first decreasing, the second constantly zero, and the third increasing, and thus each
ˆ𝑓𝑖 is convex

and
ˆ𝑓 is separable convex. Moreover, a solution x has

ˆ𝑓 (x) = 0 if and only if l ≤ x ≤ u.
By Lemma 7, an optimum x0 of min

{
ˆ𝑓 (x)

���𝐴x = b, ˆl ≤ x ≤ û, x ∈ Z𝑛
}
can be computed by

solving 3𝑛(log ∥û − ˆl∥ + 1) log

(
ˆ𝑓
[ˆl,û]

max

)
instances of (AugIP). Since ∥ˆl, û∥∞ is polynomially bounded

in ∥𝐴, b∥∞ and ∥l, u∥∞ and, by definition of
ˆ𝑓 , ˆ𝑓

[ˆl,û]
max

is bounded by 𝑛 · ∥ˆl, û∥∞, we have that

the number of times we have to solve (AugIP) is bounded by O(𝑛 log(∥𝐴, b, l, u∥∞)2). Finally, if
ˆ𝑓 (x0) = 0 then x0 is a feasible solution of (IP) and otherwise (IP) is infeasible. □

Integer Programming Notes / Winter 22/23 7

As a corollary of Lemmas 13 and 7, we immediately obtain that a polynomial (AugIP) algorithm

is sufficient for solving (IP) in polynomial time:

Corollary 14 ((AugIP) =⇒ (IP)). Problem (IP) can be solved by solving O(𝑛𝐿2) instances
of (AugIP), where 𝐿 := log(∥𝐴, 𝑓max, b, l, u∥∞), plus time O(𝑛𝜔 +min{𝑛,𝑚}𝑛𝑚).

3.2 Bounding The Norm
We begin by using the Steinitz Lemma to obtain a basic bound on 𝑔1 (𝐴).

Proposition 15 (Steinitz [21], Sevastjanov, Banaszczyk [20]). Let ∥ · ∥ be any norm, and let

x1, . . . , x𝑛 ∈ R𝑑 be such that ∥x𝑖 ∥ ≤ 1 for 𝑖 ∈ [𝑛] and ∑𝑛
𝑖=1

x𝑖 = 0. Then there exists a permutation

𝜋 ∈ 𝑆𝑛 such that for each 𝑘 ∈ [𝑛], ∥∑𝑘
𝑖=1

x𝜋 (𝑖) ∥ ≤ 𝑑 .

Proof. Wewill inductively construct sets𝐴𝑛 ⊃ 𝐴𝑛−1 ⊃ 𝐴𝑛−2 ⊃ · · ·𝐴𝑚 where𝐴𝑛 = [𝑛], |𝐴𝑘 | = 𝑘 ,
and {𝜋 (𝑖)} = 𝐴𝑖 \𝐴𝑖−1, that is, 𝜋 (𝑖) is the index which is removed as we go from 𝐴𝑖 to 𝐴𝑖−1. (This

also means we construct the permutation “backwards”, first defining 𝜋 (𝑛), then 𝜋 (𝑛 − 1) etc. We

stop at 𝜋 (𝑛−𝑚 + 1) because the sum of𝑚 vectors of norm at most 1 has norm at most𝑚, regardless

of the order.) The key is the following LP in variables 𝝀 (not x; those are the input vectors, so they

act as constants below): ∑︁
𝑖∈𝐴𝑘

𝜆𝑖x𝑖 = 0, (3)∑︁
𝑖∈𝐴𝑘

𝜆𝑖 = 𝑘 −𝑚 (4)

0 ≤ 𝝀 ≤ 1 (5)

Call it LP𝑘 . First consider 𝑘 = 𝑛. Observe that the LP is feasible: taking 𝝀 = 𝛼1 satisfies (3) for any

scalar 𝛼 ∈ R, and choosing 𝛼 = (𝑛 −𝑚)/𝑛 scales the solution so that (4) is satisfied. Now assume

that we are in step 𝑘 of the construction, that is, we have a solution 𝝀 satisfying LP𝑘 , and we wish to

find an index to remove from𝐴𝑘 in order to construct𝐴𝑘−1 and define 𝜋 (𝑘). A solution 𝝀 satisfying

LP𝑘 can be scaled down to satisfy

∑
𝑖∈𝐴𝑘

𝜆𝑖 = 𝑘 −𝑚 − 1. Since there is a solution satisfying (3) and∑
𝑖∈𝐴𝑘

𝜆𝑖 = 𝑘 −𝑚 − 1, there is also a basic solution 𝝀∗ satisfying these constraints. Moreover, those

are𝑚 + 1 equality constraints and the rest are inequality constraints 0 ≤ 𝝀 ≤ 1. LP theory says that

𝝀∗ has at most𝑚 + 1 fractional entries and the rest are integral, that is, either 0 or 1. We claim that

at least one of the integer entries in 𝝀∗ is 0, and this is the index we will drop in order to define 𝐴𝑘 .

We have 𝑘 variables in 𝝀∗, and they sum up to 𝑘 −𝑚 − 1. Say that there are 𝜑 ≤ 𝑚 + 1 fractional

variables: they contribute strictly less than 𝜑 , say 𝜑 −𝜖 , with 𝜖 < 𝑚 + 1. The remaining 𝑘 −𝜑 integer

variables must sum up to 𝑘 −𝑚 − 1− (𝜑 − 𝜖) = 𝑘 −𝑚 − 1−𝜑 + 𝜖 , but this is impossible if they were

all 1 because 𝜖 < 𝑚 + 1 and 𝑘 − 𝜑 > 𝑘 −𝑚 − 1 − 𝜑 + 𝜖 , equivalently, 𝑘 > 𝑘 −𝑚 − 1 + 𝜖 . So there is

an index 𝑖 such that 𝜆∗𝑖 = 0 and we set 𝐴𝑘−1 = 𝐴𝑘 \ {𝑖}.
Now it remains to verify that all prefix sums are indeed bounded by𝑚. Consider:

 𝑘∑︁

𝑖=1

x𝜋 (𝑖)

 =

∑︁
𝑖∈𝐴𝑘

x𝑖

 =

∑︁
𝑖∈𝐴𝑘

(1 − 𝜆𝑖)x𝑖

 ≤ ∑︁
𝑖∈𝐴𝑘

(1 − 𝜆𝑖) =𝑚

The first equality follows by the definition of 𝜋 ; the second follows by the fact that subtracting∑
𝑖 𝜆𝑖x𝑖 equates to subtracting 0 (by constraint (3)); the next inequality follows by assumption

∥x𝑖 ∥ ≤ 1 for each 𝑖 , and the final equality is by constraint (4). □

Lemma 16 (Base bound). Let 𝐴 ∈ Z𝑚×𝑛 . Then 𝑔1 (𝐴) ≤ (2𝑚∥𝐴∥∞ + 1)𝑚 .

8 M. Koutecký

Proof. Let g ∈ G(𝐴). We define a sequence of vectors in the following manner. If 𝑔𝑖 ≥ 0, we

add 𝑔𝑖 copies of the 𝑖-th column of 𝐴 to the sequence, if 𝑔𝑖 < 0 we add |𝑔𝑖 | copies of the negation of

column 𝑖 to the sequence, either way obtaining vectors v𝑖
1
, . . . , v𝑖|𝑔𝑖 | .

Clearly, the vectors v𝑖𝑗 sum up to 0 as g ∈ kerZ (𝐴) and their ℓ∞-norm is bounded by ∥𝐴∥∞. Using
the Steinitz Lemma, there is a reordering u1, . . . , u∥g∥1 (i.e., v𝑖𝑗 = u𝜋 (𝑖, 𝑗) for some permutation 𝜋)

of this sequence such that each prefix sum p𝑘 :=
∑𝑘
𝑗=1

u𝑗 is bounded by𝑚∥𝐴∥∞ in the 𝑙∞-norm.

Clearly

|{x ∈ Z𝑚 | ∥x∥∞ ≤ 𝑚∥𝐴∥∞}| = (2𝑚∥𝐴∥∞ + 1)𝑚 .

Assume for contradiction that ∥g∥1 > (2𝑚∥𝐴∥∞ + 1)𝑚 . Then two of these prefix sums are the same,

say, p𝛼 = p𝛽 with 1 ≤ 𝛼 < 𝛽 ≤ ∥g∥1. Obtain a vector g′ from the sequence u1, . . . , u𝛼 , u𝛽+1, . . . , u∥g∥1

as follows: begin with 𝑔′𝑖 := 0 for each 𝑖 ∈ [𝑛], and for every uℓ in the sequence, set

𝑔′𝑖 :=

{
𝑔′𝑖 + 1 if 𝜋−1 (ℓ) = (𝑖, 𝑗) and 𝑔𝑖 ≥ 0

𝑔′𝑖 − 1 if 𝜋−1 (ℓ) = (𝑖, 𝑗) and 𝑔𝑖 < 0 .

Similarly obtain g′′ from the sequence u𝛼+1 . . . , u𝛽 . We have 𝐴g′′ = 0 because p𝛼 − p𝛽 = 0 and

thus g′′ ∈ kerZ (𝐴), and thus also g′ ∈ kerZ (𝐴). Moreover, both g′ and g′′ are non-zero and satisfy

g′, g′′ ⊑ g. This is a contradiction with ⊑-minimality of g, hence ∥g∥1 ≤ (2𝑚∥𝐴∥∞ + 1)𝑚 , finishing
the proof. □

3.3 A Dynamic Programming Algorithm
Lemma 17 (Basic DP). Problem (AugIP) can be solved in time (2∥𝐴∥∞𝑔1 (𝐴) + 1)𝑚𝑛.

Proof. We solve an auxiliary problem: given 𝜌 ∈ N and a separable convex function 𝑓 , solve

𝐵1 (𝜌)-best{𝑓 (g) | 𝐴g = 0, l ≤ g ≤ u, g ∈ Z𝑛} . (aux1)

The lemma then follows by the following substitution. For a given (AugIP) instance (x, 𝜆), solve
the auxiliary problem (aux1) above with 𝜌 := 𝑔∞ (𝐴), 𝑓 (g) := 𝑓 (x + 𝜆g), l :=

⌈ l−x
𝜆

⌉
, and u :=

⌊ u−x
𝜆

⌋
.

If 𝑓 of (IP) was separable convex, then the newly defined 𝑓 is also separable convex. The returned

solution is a solution of (AugIP) because G(𝐴) ⊆ 𝐵1 (𝑔1 (𝐴)).
Let 𝐴𝑖 := 𝐴•,𝑖 for all 𝑖 ∈ [𝑛], be the columns of 𝐴. The crucial observation is that for every

solution g of 𝐴g = 0 with ∥g∥1 ≤ 𝜌 and each 𝑖 ∈ [𝑛], both 𝐴𝑖𝑔𝑖 and
∑𝑖
𝑗=1
𝐴 𝑗𝑔 𝑗 belong to 𝑅 :=

[−𝜌 ∥𝐴∥∞, 𝜌 ∥𝐴∥∞]𝑚 . We will now construct a directed acyclic graph, designate a start and target

vertex, and explain how a shortest path between them corresponds to an optimum of (aux1).

There are 𝑛 + 1 layers of vertices. The first layer contains a single vertex 𝑠 , which is the 𝑚-

dimensional 0-vector, and this is the starting vertex. Each of the following 𝑛 − 1 layers is a copy of

the set 𝑅. Finally, layer 𝑛 + 1 again only contains 0 ∈ Z𝑚 , which is the target vertex 𝑡 . A vertex 𝑣

in layer 𝑖 ∈ [𝑛] is some𝑚-dimensional vector r, and it has an edge to every r′ in layer 𝑖 + 1 such

that r′ = r +𝐴𝑖𝑔𝑖 , 𝑔𝑖 ∈ [−𝜌, 𝜌] ∩ [𝑙𝑖 , 𝑢𝑖]. Note that for some 𝑔𝑖 perhaps r′ ∉ 𝑅; then there is no edge.

This edge has a label 𝑔𝑖 and a length 𝑓𝑖 (𝑔𝑖) (recall here that this is 𝑓 from (aux1) and corresponds

to 𝑓 (x + 𝜆g) in which x is a constant).

Consider a path 𝑃 from 𝑠 to 𝑡 . Define g coordinate-wise by defining 𝑔𝑖 to be the label on the edge

from layer 𝑖 to layer 𝑖 + 1. Observe that for every 𝑖 ∈ [𝑛], the prefix sum ∑𝑖
𝑗=1
𝐴 𝑗𝑔 𝑗 is exactly the

vertex r on 𝑃 in layer 𝑖; consequently, 𝐴g = 0. Moreover, every g ∈ kerZ (𝐴) ∩ 𝐵1 (𝜌) is represented
by a (unique) path 𝑃 . Next, observe that 𝑓 (g) is exactly the length of the path 𝑃 corresponding to g.
Thus, a vector g corresponding to the shortest path is a solution of (aux1).

Next, regarding the complexity of this algorithm. The shortest path can be computed layer by

layer, where processing each layer takes time at most |𝑅 | times the maximum out-degree, which is

Integer Programming Notes / Winter 22/23 9

|𝑅 | · (2𝜌 + 1) ≤ (2|𝐴|∞𝜌 + 1)𝑚 , and there are 𝑛 layers to process. Plugging in 𝜌 := 𝑔1 (𝐴) yields the
claimed time. □

3.4 The Graphs of 𝐴 and Treedepth
Definition 18 (Primal and dual graph). Given a matrix𝐴 ∈ Z𝑚×𝑛 , its primal graph𝐺𝑃 (𝐴) = (𝑉 , 𝐸)

is defined as𝑉 = [𝑛] and 𝐸 =

{
{𝑖, 𝑗} ∈

([𝑛]
2

) ��� ∃𝑘 ∈ [𝑚] : 𝐴𝑘,𝑖 , 𝐴𝑘,𝑗 ≠ 0

}
. In other words, its vertices

are the columns of 𝐴 and two vertices are connected if there is a row with non-zero entries at the

corresponding columns. The dual graph of 𝐴 is defined as 𝐺𝐷 (𝐴) := 𝐺𝑃 (𝐴⊺), that is, the primal

graph of the transpose of 𝐴.

From this point on we always assume that𝐺𝑃 (𝐴) and𝐺𝐷 (𝐴) are connected, otherwise 𝐴 has (up

to row and column permutations) a diagonal structure 𝐴 =

(
𝐴1

. . .
𝐴𝑑

)
and solving (IP) amounts to

solving 𝑑 smaller (IP) instances independently.

Definition 19 (Treedepth). The closure cl(𝐹) of a rooted tree 𝐹 is the graph obtained from 𝐹 by

making every vertex adjacent to all of its ancestors. We consider both 𝐹 and cl(𝐹) as undirected
graphs. The height of a tree 𝐹 denoted height(𝐹) is the maximum number of vertices on any

root-leaf path. The treedepth td(𝐺) of a connected graph 𝐺 is the minimum height of a tree 𝐹 such

that 𝐺 ⊆ cl(𝐹). A td-decomposition of 𝐺 is a tree 𝐹 such that 𝐺 ⊆ cl(𝐹). A td-decomposition 𝐹 of 𝐺

is optimal if height(𝐹) = td(𝐺).

Computing td(𝐺) is NP-hard, but fortunately can be done quickly when td(𝐺) is small:

Proposition 20 ([19]). The treedepth td(𝐺) of a graph 𝐺 with an optimal td-decomposition 𝐹 can

be computed in time 2
td(𝐺)2 · |𝑉 (𝐺) |.

We define the primal treedepth of 𝐴 to be td𝑃 (𝐴) := td(𝐺𝑃 (𝐴)) and the dual treedepth of 𝐴 to be

td𝐷 (𝐴) := td(𝐺𝐷 (𝐴)).
We often assume that an optimal td-decomposition is given since the time required to find it is

dominated by other terms. Moreover, in many applications a small td-decomposition of 𝐺𝑃 (𝐴) or
𝐺𝐷 (𝐴) is clear from the way 𝐴 was constructed and does not have to be computed as part of the

algorithm.

It is clear that a graph 𝐺 has at most td(𝐺)2 |𝑉 (𝐺) | edges because the closure of each root-leaf

path of a td-decomposition of𝐺 contains at most td(𝐺)2 edges, and there are at most 𝑛 leaves. Thus,

constructing 𝐺𝑃 (𝐴) or 𝐺𝐷 (𝐴) can be done in linear time if 𝐴 is given in its sparse representation.

Throughout we shall assume that 𝐺𝑃 (𝐴) or 𝐺𝐷 (𝐴) are given.
To facilitate our proofs and to provide more refined complexity bounds we introduce a new

parameter called topological height. This notion is useful in our analysis and proofs, and we later

show that it plays a crucial role in complexity estimates of (IP). It has not been studied elsewhere

to the best of our knowledge.

Definition 21 (Topological height). A vertex of a rooted tree 𝐹 is degenerate if it has exactly one

child, and non-degenerate otherwise (i.e., if it is a leaf or has at least two children). The topological

height of 𝐹 , denoted th(𝐹), is the maximum number of non-degenerate vertices on any root-leaf

path in 𝐹 . Equivalently, th(𝐹) is the height of 𝐹 after contracting each edge from a degenerate

vertex to its unique child. Clearly, th(𝐹) ≤ height(𝐹).
We shall now define the level heights of 𝐹 , which relate to lengths of paths between non-

degenerate vertices. For a root-leaf path 𝑃 = (𝑣𝑏 (0) , . . . , 𝑣𝑏 (1) , . . . , 𝑣𝑏 (2) , . . . , 𝑣𝑏 (𝑒)) with 𝑒 non-

degenerate vertices 𝑣𝑏 (1) , . . . , 𝑣𝑏 (𝑒) (potentially 𝑣𝑏 (0) = 𝑣𝑏 (1)), define 𝑘1 (𝑃) := |{𝑣𝑏 (0) , . . . , 𝑣𝑏 (1) }|,

10 M. Koutecký

1

4

3

2

5

6

1

4

3

2 5

6

𝐹 𝐹 ′

⇓

𝑘2(𝐹){

}𝑘1(𝐹 ′)

⇓
4

2 6
3

2 5
4 6

𝑘1(𝐹){

}𝑘2(𝐹 ′)

}𝑘3(𝐹 ′)

(a) Two optimal td-decompositions 𝐹 and 𝐹 ′ of
the cycle on six vertices (in dashed edges). Non-
degenerate vertices are enlarged. The trees ob-
tained by contracting edges outgoing from ver-
tices with only one child are pictured below. No-
tice that even though both 𝐹 and 𝐹 ′ are optimal
td-decompositions, their topological height dif-
fers. Dashed lines depict “levels” of 𝐹 and 𝐹 ′,
and we have 𝑘1 (𝐹) = 𝑘2 (𝐹) = 𝑘1 (𝐹 ′) = 2 and
𝑘2 (𝐹 ′) = 𝑘3 (𝐹 ′) = 1.

𝑟 𝑣

𝑟1

𝑟𝑑

𝐹1

𝐹𝑑

𝐴1

𝐴𝑑

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑘1(𝐹)

̄𝐴1

̄𝐴𝑑

̂𝐹𝑑

𝐴̂𝑑

(b) The situation of Lemma 23: a td-decomposition 𝐹

of 𝐺𝑃 (𝐴) pictured in the matrix 𝐴, the decomposi-
tion into smaller blocks 𝐴1, . . . , 𝐴𝑑 , 𝐴1, . . . , 𝐴𝑑 derived
from 𝐹 and their td-decompositions 𝐹1, . . . , 𝐹𝑑 , and a td-
decomposition 𝐹𝑑 of 𝐺𝑃 (𝐴𝑑) (Lemma 26).

Fig. 1. Illustration of Definitions 19 and 21 (part 1a) and Lemmas 23 and 26 (part 1b).

𝑘𝑖 (𝑃) := |{𝑣𝑏 (𝑖−1) , . . . , 𝑣𝑏 (𝑖) }| − 1 for all 𝑖 ∈ [2, 𝑒], and 𝑘𝑖 (𝑃) := 0 for all 𝑖 > 𝑒 . For each 𝑖 ∈ [th(𝐹)],
define 𝑘𝑖 (𝐹) := max𝑃 :root-leaf path 𝑘𝑖 (𝑃). We call 𝑘1 (𝐹), . . . , 𝑘th(𝐹) (𝐹) the level heights of 𝐹 . See Fig-
ure 1a.

Definition 22 (Block-structured Matrix). v Let 𝐴 ∈ Z𝑚×𝑛 and 𝐹 be a td-decomposition of 𝐺𝑃 (𝐴).
We say that 𝐴 is block-structured along 𝐹 if either th(𝐹) = 1, or if th(𝐹) > 1 and the following holds.

Let 𝑣 be the first non-degenerate vertex in 𝐹 on a path from the root, 𝑟1, . . . , 𝑟𝑑 be the children of 𝑣 ,

𝐹𝑖 be the subtree of 𝐹 rooted in 𝑟𝑖 , and 𝑛𝑖 := |𝑉 (𝐹𝑖) |, for 𝑖 ∈ [𝑑], and

𝐴 =
©­­«
𝐴1 𝐴1

...
. . .

𝐴𝑑 𝐴𝑑

ª®®¬ , (block-structure)

where, for 𝑖 ∈ [𝑑],𝐴𝑖 ∈ Z𝑚𝑖×𝑘1 (𝐹)
where 𝑘1 (𝐹) is the first level height of 𝐹 and𝑚𝑖 ∈ N,𝐴𝑖 ∈ Z𝑚𝑖×𝑛𝑖

,

and 𝐴𝑖 is block-structured along 𝐹𝑖 . Note that th(𝐹𝑖) ≤ th(𝐹) − 1, height(𝐹𝑖) ≤ height(𝐹) − 𝑘1 (𝐹),
for 𝑖 ∈ [𝑑].

Whenever 𝐴 and 𝐹 are given, we will assume throughout this paper that 𝐴 is block-structured

along 𝐹 . The following Lemma shows that this is without loss of generality as we can always

efficiently put 𝐴 in this format.

Integer Programming Notes / Winter 22/23 11

Lemma 23 (Primal Decomposition). Let 𝐴 ∈ Z𝑚×𝑛 , 𝐺𝑃 (𝐴), and a td-decomposition 𝐹 of 𝐺𝑃 (𝐴)
be given, where 𝑛,𝑚 ≥ 1. There exists an algorithm which in time O(𝑛) permutes the rows and columns

of 𝐴 such that the resulting matrix 𝐴′ is block-structured along 𝐹 .

Proof of Lemma 23. Denote by 𝑟 the root of 𝐹 . Take any root-leaf path in 𝐹 and let 𝑣 be the

first non-degenerate vertex (i.e., a leaf or a vertex with at least two children) on this path; note

that possibly 𝑣 = 𝑟 . Denote by 𝑃 the path from 𝑟 to 𝑣 and observe that 𝑘1 (𝐹) is the number of

vertices of 𝑃 . Let 𝑑 := deg(𝑣) be the number of children of 𝑣 and denote them 𝑟1, . . . , 𝑟𝑑 , and let

𝐹1, . . . , 𝐹𝑑 be the subtrees of 𝐹 rooted in 𝑟1, . . . , 𝑟𝑑 . Clearly th(𝐹𝑖) ≤ th(𝐹) − 1 for each 𝑖 ∈ [𝑑] since
𝑣 is a non-degenerate vertex. For a set of column indices 𝑆 ⊆ [𝑛] denote by 𝐴•,𝑆 the submatrix of

𝐴 consisting of exactly the columns indexed by 𝑆 . For each 𝑖 ∈ [𝑑], we obtain 𝐴𝑖 from 𝐴•,𝑉 (𝐹𝑖) by
deleting zero rows, and we obtain 𝐴𝑖 from 𝐴•,𝑉 (𝑃) by only keeping rows which are non-zero in

𝐴•,𝑉 (𝐹𝑖) . For every row of 𝐴 whose support is contained in 𝑉 (𝑃), append its restriction to 𝑉 (𝑃) to
𝐴1, and append a zero row to 𝐴1. If 𝐴 has 𝜁 zero rows, then append 𝜁 zero rows to 𝐴1 and 𝐴1; this

accounts for zero rows of 𝐴. Now, apply the same procedure recursively to 𝐹1, . . . , 𝐹𝑑 ; the base case

is when 𝐹𝑖 has th(𝐹𝑖) = 1 and 𝐴𝑖 is already block-structured by definition.

To finish the proof we need to argue that 𝐴 has the form (block-structure), in particular, that

there is no overlap between the blocks 𝐴1, . . . , 𝐴𝑑 . This follows simply from the fact that by the

definition of treedepth there are no edges between any two 𝑢 ∈ 𝐹𝑖 ,𝑤 ∈ 𝐹 𝑗 for 𝑖 ≠ 𝑗 , and thus, by

definition of 𝐺𝑃 (𝐴), there is no row containing a non-zero at indices 𝑢 and 𝑣 , cf. Figure 1b. □

Note that given an (IP), the primal decomposition naturally partitions the right hand side

b = (b1, . . . , b𝑑) according to the rows of 𝐴1, . . . , 𝐴𝑑 , and each object of length 𝑛 (such as bounds

l, u, a solution x, any step g, or the objective function 𝑓) into 𝑑 + 1 objects according to the columns

of 𝐴1, 𝐴1, . . . , 𝐴𝑑 . For example, we write x = (x0, x1, . . . , x𝑑).
By considering the transpose of 𝐴 we get an analogous notion and a corollary for the dual case:

Definition 24 (Block-structured Matrix (dual)). Let 𝐴 ∈ Z𝑚×𝑛 and 𝐹 be a td-decomposition of

𝐺𝐷 (𝐴). We say that 𝐴 is dual block-structured along 𝐹 if either th(𝐹) = 1, or if th(𝐹) > 1 and the

following holds. Let 𝑣 be the first non-degenerate vertex in 𝐹 on a path from the root, 𝑟1, . . . , 𝑟𝑑 be

the children of 𝑣 , 𝐹𝑖 be the subtree of 𝐹 rooted in 𝑟𝑖 , and𝑚𝑖 := |𝑉 (𝐹𝑖) |, for 𝑖 ∈ [𝑑], and

𝐴 =

©­­­­­­«

𝐴1 𝐴2 · · · 𝐴𝑑
𝐴1

𝐴2

. . .

𝐴𝑑

ª®®®®®®¬
. (dual-block-structure)

where 𝑑 ∈ N, and for all 𝑖 ∈ [𝑑], 𝐴𝑖 ∈ Z𝑘1 (𝐹)×𝑛𝑖
, and 𝐴𝑖 ∈ Z𝑚𝑖×𝑛𝑖

, 𝑛𝑖 ∈ N, and 𝐴𝑖 is block-
structured along 𝐹𝑖 . Note that th(𝐹𝑖) ≤ th(𝐹) − 1, height(𝐹𝑖) ≤ height(𝐹) − 𝑘1 (𝐹), for 𝑖 ∈ [𝑑].

Corollary 25 (Dual decomposition). Let𝐴 ∈ Z𝑚×𝑛 ,𝐺𝐷 (𝐴), and a td-decomposition 𝐹 of𝐺𝐷 (𝐴)
be given, where 𝑛,𝑚 ≥ 1. There exists an algorithm which in time O(𝑛) permutes the rows and columns

of 𝐴 such that the resulting matrix 𝐴′ is dual block-structured along 𝐹 .

Again, the dual decomposition naturally partitions the right hand side b = (b0, b1, . . . , b𝑑)
according to the rows of 𝐴1, 𝐴1, . . . , 𝐴𝑑 , and each object of length 𝑛 into 𝑑 objects according to the

columns of 𝐴1, . . . , 𝐴𝑑 .

Lemma 26. Let𝐴 ∈ Z𝑛×𝑚 , a td-decomposition 𝐹 of𝐺𝑃 (𝐴) (or𝐺𝐷 (𝐴)), and 𝐴𝑖 , 𝐴𝑖 , 𝐹𝑖 , for all 𝑖 ∈ [𝑑],
be as in Definitions 22 (or 24). Let 𝐴𝑖 := (𝐴𝑖 𝐴𝑖) (or 𝐴𝑖 :=

(
𝐴𝑖

𝐴𝑖

)
, respectively) and let 𝐹𝑖 be obtained

12 M. Koutecký

from 𝐹𝑖 by appending a path on 𝑘1 (𝐹) new vertices to the root of 𝐹𝑖 , and the other endpoint of the path

is the new root. Then 𝐹𝑖 is a td-decomposition of 𝐴𝑖 , th(𝐹𝑖) < th(𝐹), and height(𝐹𝑖) ≤ height(𝐹).

Proof. Consider Figure 1b. The construction of 𝐹𝑖 can be equivalently described as taking 𝐹

and deleting all 𝐹 𝑗 , 𝑗 ≠ 𝑖 . Thus, 𝐹𝑖 has the claimed properties, in particular th(𝐹𝑖) < th(𝐹) because
𝑣 was non-degenerate in 𝐹 but is degenerate in 𝐹𝑖 . The dual case follows by transposition. □

3.4.1 Pedagogical Advice. The case of th(𝐹) = 2 is the simplest non-trivial case; in the primal

case called “2-stage stochastic IP” and in the dual case called “𝑛-fold IP”. It turns out that usually

whatever arguments work in this simplest case can be inductively extended to the general case.

Thus it is usually helpful to first read the inductive proofs which follow with the assumption that

the blocks 𝐴1, . . . , 𝐴𝑑 are small, and once the reader is confident with the arguments in this case,

consider what needs to be done to generalize the argument.

Similarly, it might be helpful to first assume that the blocks 𝐴1, . . . , 𝐴𝑑 are identical, and that the

blocks 𝐴1, . . . , 𝐴𝑑 are identical, and later check that this had essentially no impact on the argument

and that it holds in general.

Finally, we strive to give quantitative bounds rather than just showing that some quantity is

bounded by a parameter. But on a first reading, it may be helpful to simply convince oneself of

the fact that a bound or an algorithm is indeed qualitatively as claimed, and not be distracted by

expressions and computations which appear complicated. We choose to give the proofs already for

the general case in order to avoid repetition.

3.5 Bounding The Norms
3.5.1 Norm of Primal Treedepth.

Lemma 27 (Primal Norm). Let𝐴 ∈ Z𝑚×𝑛 , and 𝐹 be a td-decomposition of𝐺𝑃 (𝐴). Then there exists
a constant 𝛼 ∈ N such that

𝑔∞ (𝐴) ≤ 2
2
...

2
(2∥𝐴∥∞)2

th(𝐹) ·𝛼 ·td𝑃 (𝐴)2

︸ ︷︷ ︸
th
(𝐹)
−1

We will need a powerful lemma due to Klein [14].

Proposition 28 (Klein [14]). Let 𝑇1, . . . ,𝑇𝑛 ⊆ Z𝑑 be multisets all belonging to one orthant where

all elements t ∈ 𝑇𝑖 have bounded size ∥t∥∞ ≤ 𝐶 and where∑︁
t∈𝑇1

t =
∑︁
t∈𝑇2

t = · · · =
∑︁
t∈𝑇𝑛

t .

Then there exists a constant 𝛼 ∈ N and non-empty submultisets 𝑆1 ⊆ 𝑇1, . . . , 𝑆𝑛 ⊆ 𝑇𝑛 of bounded size
|𝑆𝑖 | ≤ (𝑑𝐶)𝑑𝐶

𝛼𝑑2

such that ∑︁
s∈𝑆1

s =
∑︁
s∈𝑆2

s = · · · =
∑︁
s∈𝑆𝑛

s .

Proof of Lemma 27. We will proceed by induction on th(𝐹). In the base case when th(𝐹) = 1,

𝐺𝑃 (𝐴) is a path and thus 𝐴 has td𝑃 (𝐴) columns. Observe that the number of rows of 𝐴 is bounded

by td𝑃 (𝐴) as we assume purity. By Lemma 16 we then have that

𝑔∞ (𝐴) ≤ td𝑃 (𝐴)𝑔1 (𝐴) ≤ td𝑃 (𝐴) (2∥𝐴∥∞ td𝑃 (𝐴) + 1)td𝑃 (𝐴) ≤ 2
2𝛼 ·td𝑃 (𝐴)2+log 2∥𝐴∥∞ .

In the inductive step, we assume 𝐴 is block-structured along 𝐹 (otherwise apply Lemma 23).

Let 𝐴𝑖 = (𝐴𝑖 𝐴𝑖) ∈ Z𝑚𝑖×𝑘 ′+𝑛𝑖
and 𝐹𝑖 as in Lemma 26, and let 𝑔∞ := max𝑖∈[𝑑] 𝑔∞ (𝐴𝑖). Note that

Integer Programming Notes / Winter 22/23 13

td𝑃 (𝐴𝑖) ≤ td𝑃 (𝐴). Since 𝐹𝑖 is a td-decomposition of 𝐺𝑃 (𝐴𝑖) and th(𝐹𝑖) < th(𝐹), we may apply

induction on 𝐴𝑖 , showing

𝑔∞ ≤ 2
2
...

2
(2∥𝐴∥∞)2

th(𝐹) ·𝛼 ·td𝑃 (𝐴)2

︸ ︷︷ ︸
th
(𝐹)
−2 (6)

Consider g = (g0, g1, . . . , g𝑑) ∈ G(𝐴). For each 𝑖 ∈ [𝑑], decompose (g0, g𝑖) = ∑𝑁𝑖

𝑗=1
(h0

𝑗 , h
𝑖
𝑗) with

(h0

𝑗 , h
𝑖
𝑗) ∈ G(𝐴𝑖) by the Positive Sum Property (Proposition 6). Let𝑇𝑖 :=

{
h0

𝑗

�� 𝑗 ∈ [𝑁𝑖]} and observe
that maxt∈𝑇𝑖 ∥t∥∞ ≤ 𝑔∞ (𝐴𝑖) ≤ 𝑔∞. If applying Proposition 28 to 𝑇1, . . . ,𝑇𝑑 yielded sets 𝑆1, . . . , 𝑆𝑑
such that 𝑆𝑖 ⊊ 𝑇𝑖 for some 𝑖 ∈ [𝑑] then g was not ⊑-minimal, a contradiction. Let 𝑘1

:= 𝑘1 (𝐹). Thus
Proposition 28 implies, for each 𝑖 ∈ [𝑑],

|𝑇𝑖 | ≤ (𝑘1𝑔∞)𝑘1𝑔
𝛼𝑘2

1

∞ = 2
2
𝛼𝑘2

1
+log(𝑘

1
𝑔∞)+log log(𝑘

1
𝑔∞) ≤ 2

2
2𝛼𝑘2

1
+log𝑔∞

and ∥(g0, g𝑖)∥∞ ≤ 𝑔∞ |𝑇𝑖 |, which in turnmeans that ∥g∥∞ ≤ 𝑔∞max𝑖∈[𝑑] |𝑇𝑖 |. Note that 2
2

2𝛼𝑘2

1
+log𝑔∞

𝑔∞ ≤
2

2
2𝛼𝑘2

1
+log𝑔∞+log log𝑔∞

. To simplify, let 𝜁 := 2𝛼𝑘2

1
+ log𝑔∞ + log log𝑔∞ so that the expression reads 2

2
𝜁

.

Plugging in the bound (6) for 𝑔∞ then gives

𝜁 = 2𝛼𝑘2

1
+ log𝑔∞ + log log𝑔∞ ≤ 2𝛼𝑘2

1
+ 2 log𝑔∞ ≤

2𝛼𝑘2

1
+ 2 · 2 ...

2
(2∥𝐴∥∞)2

th(𝐹)−3 ·𝛼 ·td𝑃 (𝐴)2︸︷︷︸
th
(𝐹)
−3 ≤ 2

...
2
(2∥𝐴∥∞)2

th(𝐹) ·𝛼 ·td𝑃 (𝐴)2︸︷︷︸
th
(𝐹)
−3 , and thus,

2
2
𝜁 ≤ 2

2
2
...

2
(2∥𝐴∥∞)2

th(𝐹) ·𝛼 ·td𝑃 (𝐴)2︸︷︷︸
th
(𝐹)
−3 ≤ 𝑔∞ (𝐴) ≤ 2

2
...

2
(2∥𝐴∥∞)2

th(𝐹) ·𝛼 ·td𝑃 (𝐴)2

︸ ︷︷ ︸
th
(𝐹)
−1

□

3.5.2 Norm of Dual Treedepth.

Lemma 29 (Dual Norm). Let 𝐴 ∈ Z𝑚×𝑛 , 𝐹 be a td-decomposition of 𝐺𝐷 (𝐴), and let 𝐾 :=

max𝑃 :root-leaf path in 𝐹

∏
th(𝐹)
𝑖=1

(𝑘𝑖 (𝑃) + 1). Then 𝑔1 (𝐴) ≤ (3∥𝐴∥∞𝐾)𝐾−1
.

Proof. The proof will proceed by induction over th(𝐹). In the base case we have th(𝐹) = 1

and thus 𝐺𝐷 (𝐴) is a path with height(𝐹) vertices, meaning 𝐴 has height(𝐹) rows. Now we use

the Base bound of Lemma 16 to get that 𝑔1 (𝐴) ≤ (2∥𝐴∥∞ height(𝐹) + 1)td𝐷 (𝐴) , which is at most

(3∥𝐴∥∞𝐾)𝐾−1
, where 𝐾 = height(𝐹) + 1 = 𝑘1 (𝐹) + 1. (Note that 𝑘1 (𝐹) = 𝑘1 (𝑃) for all root-leaf

paths 𝑃 in 𝐹 since all paths share an identical segment from the root to the first non-degenerate

vertex.)

For the inductive step, assume that the claim holds for all trees of topological height less

than th(𝐹). Let g ∈ G(𝐴) and 𝐾 ′ := max𝑃 :root-leaf path in 𝐹

∏
th(𝐹)
𝑖=2

(𝑘𝑖 (𝑃) + 1). For each 𝑖 ∈ [𝑑],
g𝑖 has a decomposition into elements g𝑖𝑗 of G(𝐴𝑖), and by induction we have ∥g𝑖𝑗 ∥1 ≤ 𝑔1 (𝐴𝑖) ≤
(3∥𝐴∥∞𝐾 ′)𝐾

′−1 =: 𝑔1. Construct a sequence of vectors as follows: for each 𝑖 ∈ [𝑑] and each g𝑖𝑗 in
the decomposition of g𝑖 , insert v𝑖𝑗 := 𝐴𝑖g𝑖𝑗 into the sequence. Note that ∥v𝑖𝑗 ∥∞ ≤ ∥𝐴∥∞𝑔1. Denote

the resulting sequence u1, . . . , u𝑁 .
Applying the Steinitz Lemma (Proposition 15) to this sequence, we obtain its permutation

u𝜋 (1) , . . . , u𝜋 (𝑁) such that the ℓ∞-norm of each of its prefix sums is bounded by 𝑘1 (𝐹)∥𝐴∥∞𝑔1.

As in the proof of Lemma 16, we will prove that no two prefix sums are the same, thus 𝑁 ≤

14 M. Koutecký

(2𝑘1 (𝐹)∥𝐴∥∞𝑔1 + 1)𝑘1 (𝐹)
and subsequently ∥g∥1 ≤ 𝑁𝑔1 ≤ 𝑔1 (2𝑘1 (𝐹)∥𝐴∥∞𝑔1 + 1)𝑘1 (𝐹)

. Plugging in

𝑔1 = (3∥𝐴∥∞𝐾 ′)𝐾
′−1 ≤ (3∥𝐴∥∞𝐾)𝐾

′−1
and simplifying yields

∥g∥1 ≤ (3∥𝐴∥∞𝐾)𝐾
′−1 · (3∥𝐴∥∞𝐾)𝑘1 (𝐹)𝐾 ′ = (3∥𝐴∥∞𝐾)𝐾−1 .

Assume to the contrary that some two prefix sums p𝛼 and p𝛽 , for 𝛼 < 𝛽 , are identical. Then the

sequence u𝛼+1, . . . , u𝛽 sums up to zero and we may “work backward” from it to obtain an integer

vector ḡ ⊏ g, which is a contradiction to g ∈ G(𝐴). Specifically, ḡ can be obtained by initially

setting ḡ = 0 and then, for each 𝛾 ∈ [𝛼 + 1, 𝛽], if 𝜋−1 (𝛾) = (𝑖, 𝑗), setting ḡ𝑖 := ḡ𝑖 + g𝑖𝑗 . □

Remark. Our definition of 𝐾 allows us to recover the currently best known upper bounds on

𝑔1 (𝐴) from Lemma 29. Specifically, Knop et al. [16, Lemma 10] show that 𝑔1 (𝐴) ≤ (2∥𝐴∥∞ +
1)2td𝐷 (𝐴)−1

. This pertains to the worst case when th(𝐹) = height(𝐹) = td𝐷 (𝐴). Then, we have

𝐾 =
∏

th(𝐹)
𝑖=1
(𝑘𝑖 (𝑃) + 1) = 2

td𝐷 (𝐴)
and our bound essentially matches theirs. On the other hand, our

bound is better in scenarios when th(𝐹) < height(𝐹) and 𝐾 is attained by some path with 𝑘𝑖 (𝑃) > 1

for some 𝑖 ∈ th(𝐹). A particular example of this are 𝑁 -fold and tree-fold matrices.

3.6 Solving Augmentation IP
3.6.1 Primal Treedepth.

Lemma 30 (Primal Lemma). Problem (AugIP) can be solved in time td𝑃 (𝐴)2 (2𝑔∞ (𝐴) + 1)td𝑃 (𝐴)𝑛.

Proof. Let 𝐹 be an optimal td-decomposition of 𝐺𝑃 (𝐴). The proof proceeds by induction on

th(𝐹) ≤ td𝑃 (𝐴). For that, we prove a slightly more general claim:

Claim. Given 𝜌 ∈ N, there is an algorithm running in time td𝑃 (𝐴)2 (2𝜌 + 1)td𝑃 (𝐴)𝑛 which solves

𝐵∞ (𝜌)-best{𝑓 (g) | 𝐴g = b, l ≤ g ≤ u, g ∈ Z𝑛}
for any separable-convex function 𝑓 .

The statement of the Lemma is obtained by the following substitution. For a given (AugIP)

instance (x, 𝜆), solve the auxiliary problem above with 𝜌 := 𝑔∞ (𝐴), 𝑓 (g) := 𝑓 (x + 𝜆g), b := 0,
l :=

⌈ l−x
𝜆

⌉
, and u :=

⌊ u−x
𝜆

⌋
. If 𝑓 of (IP) was separable convex, then the newly defined 𝑓 is also

separable convex. The returned solution is a solution of (AugIP) because G(𝐴) ⊆ 𝐵∞ (𝑔∞ (𝐴)).
As the base case, if th(𝐹) = 1, then 𝐹 is a path, meaning that 𝐴 has td𝑃 (𝐴) columns. An optimal

solution is found simply by enumerating all (2𝜌 + 1)td𝑃 (𝐴) integer vectors g ∈ [−𝜌, 𝜌]td𝑃 (𝐴) ∩ [l, u],
for each checking 𝐴g = b and evaluating 𝑓 , and returning the best feasible one. Since the number

of rows of 𝐴 is at most its number of columns, which is td𝑃 (𝐴), checking whether 𝐴g = b takes

time at most td𝑃 (𝐴)2 for each g.
As the induction step, we assume 𝐴 is block-structured along 𝐹 (otherwise apply Lemma 23),

hence we have matrices 𝐴1, . . . , 𝐴𝑑 , 𝐴1, . . . , 𝐴𝑑 for some 𝑑 and td-decompositions 𝐹1, . . . , 𝐹𝑑 for

𝐺𝑃 (𝐴1), . . . ,𝐺𝑃 (𝐴𝑑), respectively, with, for each 𝑖 ∈ [𝑑], 𝐴𝑖 having 𝑘1 (𝐹) columns, 𝐹𝑖 having

th(𝐹𝑖) < th(𝐹), and td𝑃 (𝐴𝑖) ≤ td𝑃 (𝐴) − 𝑘1 (𝐹). Now iterate over all vectors g0 ∈ Z𝑘1 (𝐹)
in

[−𝜌, 𝜌]𝑘1 (𝐹) ∩ [l0, u0] and for each use the algorithm which exists by induction to compute 𝑑

vectors g𝑖 , 𝑖 ∈ [𝑑], such that g𝑖 is a solution to

𝐵∞ (𝜌)-best{𝑓 (g𝑖) | 𝐴𝑖g𝑖 = −𝐴𝑖g0 + b𝑖 , l𝑖 ≤ g𝑖 ≤ u𝑖 , g𝑖 ∈ Z𝑛𝑖 } . (7)

Finally return the vector (g0, . . . , g𝑑) which minimizes

∑𝑑
𝑖=0

𝑓 (g𝑖). If g𝑖 is undefined for some 𝑖 ∈ [𝑑]
because the subproblem (7) has no solution, report that the problem has no solution.

Let 𝑘 := td𝑃 (𝐴) − 𝑘1 (𝐹). There are (2𝜌 + 1)𝑘1 (𝐹)
choices of g0

, and computing the solution

(g1, . . . , g𝑑) for each takes time at most

∑𝑑
𝑖=1
𝑘2 (2𝜌 + 1)𝑘𝑛𝑖 = 𝑘2 (2𝜌 + 1)𝑘𝑛. For each choice we also

Integer Programming Notes / Winter 22/23 15

need to compute the product−𝐴𝑖g0
, which is possible in time𝑘1 (𝐹) ·td𝑃 (𝐴) since the number of rows

of𝐴𝑖 is at most td𝑃 (𝐴). The total time needed is thus (2𝜌+1)𝑘1 (𝐹) ·
(
td𝑃 (𝐴) · 𝑘1 (𝐹) + 𝑘2 (2𝜌 + 1)𝑘

)
𝑛 ≤

td𝑃 (𝐴)2 (2𝜌 + 1)td𝑃 (𝐴)𝑛. □

Lemma 31 (Dual Lemma). Problem (AugIP) can be solved in time (2∥𝐴∥∞𝑔1 (𝐴) + 1)O(td𝐷 (𝐴))𝑛.

Proof. We solve an auxiliary problem analogous to the one in Lemma 30: given 𝜌 ∈ N and a

separable convex function 𝑓 , solve

𝐵1 (𝜌)-best{𝑓 (g) | 𝐴g = b, l ≤ g ≤ u, g ∈ Z𝑛} .
The lemma then follows by the same substitution described at the beginning of the proof of

Lemma 30. We assume that ∥b∥∞ ≤ 𝜌 ∥𝐴∥∞ since otherwise there is no solution within 𝐵1 (𝜌).
Let 𝐹 be an optimal td-decomposition of 𝐺𝐷 (𝐴). We define the algorithm recursively over th(𝐹).

If th(𝐹) ≥ 2, we assume 𝐴 is dual block-structured along 𝐹 (otherwise apply Corollary 25) and we

have, for every 𝑖 ∈ [𝑑], matrices 𝐴𝑖 , 𝐴𝑖 , 𝐴𝑖 and a tree 𝐹𝑖 (see Lemma 26) with the claimed properties,

and a corresponding partitioning of b, l, u, g and 𝑓 . If th(𝐹) = 1, let 𝑑 := 𝑛 and 𝐴𝑖 := 𝐴•,𝑖 , for all
𝑖 ∈ [𝑑], be the columns of 𝐴, and let b1, . . . , b𝑛 be empty vectors (i.e., vectors of dimension zero).

The crucial observation is that for every solution g of 𝐴g = b with ∥g∥1 ≤ 𝜌 and each 𝑖 ∈ [𝑑],
both 𝐴𝑖g𝑖 and

∑𝑖
𝑗=1
𝐴 𝑗g𝑗 belong to 𝑅 := [−𝜌 ∥𝐴∥∞, 𝜌 ∥𝐴∥∞]𝑘1 (𝐹)

. For every 𝑖 ∈ [𝑑] and every r ∈ 𝑅,
solve

𝐵1 (𝜌)-best{𝑓 𝑖 (g𝑖) | 𝐴𝑖g𝑖 = (r, b𝑖), l𝑖 ≤ g𝑖 ≤ u𝑖 , g𝑖 ∈ Z𝑛𝑖 } . (8)

In the base case when𝐴𝑖 has only one column, we simply enumerate all g𝑖 ∈ [l𝑖 , u𝑖] ∩ [−𝜌, 𝜌], check
whether the equality constraints are satisfied, and return the best feasible choice. If th(𝐹) > 1, then

we use recursion to solve (8). The recursive call is well-defined, since, for all 𝑖 ∈ [𝑑], th(𝐹𝑖) < th(𝐹)
and 𝐹𝑖 is a td-decomposition of 𝐺𝐷 (𝐴𝑖). Next, we show how to “glue” these solutions together.

Let r ∈ 𝑅 and denote by g𝑖r a solution to the subproblem (8); by slight abuse of notation, when

the subproblem has no solution, we define 𝑓 𝑖 (g𝑖r) := +∞. Now we need to find such r1, . . . , r𝑑 ∈ 𝑅
that

∑𝑑
𝑖=1

r𝑖 = b0

and

∑𝑑
𝑖=1

𝑓 𝑖 (g𝑖r𝑖) is minimized. This is actually a form of the (min, +)-convolution
problem, a fact which we will use later. For now it suffices to say that this problem can be easily

solved using dynamic programming in 𝑑 stages: our DP table 𝐷 shall have an entry 𝐷 (𝑖, r) for
𝑖 ∈ [𝑑] and r ∈ 𝑅 whose meaning is the minimum

∑𝑖
𝑗=1

𝑓 𝑗 (g𝑗r𝑗) where
∑𝑖
𝑗=1

r𝑗 = r. To compute 𝐷 ,

set 𝐷 (0, r) := 0 for r = 0 and 𝐷 (0, r) := +∞ otherwise, and for 𝑖 ∈ [𝑑], set
𝐷 (𝑖, r) := min

r′,r′′∈𝑅:

r′+r′′=r

𝐷 (𝑖 − 1, r′) + 𝑓 𝑖 (g𝑖r′′) .

The value of the solution is 𝐷 (𝑑, b0) and the solution g = (g1, . . . , g𝑑) itself can be computed easily

with a bit more bookkeeping in the table 𝐷 . If 𝐷 (𝑑, b0) = +∞, report that the problem has no

solution. Another important observation is this: in the DP above we computed the solution of

the auxiliary problem not only for the right hand side b, but for all right hand sides of the form

(r, b1, . . . , b𝑑) where r ∈ 𝑅 and b1, . . . , b𝑑 are fixed. We store all of these intermediate results in an

array (an approach also known as “memoization”). When the algorithm asks for solutions of such

instances, we simply retrieve them from the array of intermediate results instead of recomputing

them. This is important for the complexity analysis we will describe now.

The recursion tree has th(𝐹) levels, which we number 1, . . . , th(𝐹), with level 1 being the base of

the recursion. Let us compute the time required at each level. In the base case th(𝐹) = 1, recall that

the matrix 𝐴𝑖 in subproblem (8) is a single column with height(𝐹) rows, and solving (8) amounts to

trying at most 2𝜌 + 1 feasible valuations of g𝑖 (which is a scalar variable) satisfying l𝑖 ≤ g𝑖 ≤ u𝑖 and
returning the best feasible one. Since there are 𝑛 columns in total, computing the solutions of (8)

16 M. Koutecký

takes time (2𝜌 +1)𝑛. Let 𝑁1 be the number of leaves of 𝐹 , and let 𝛼 𝑗 , 𝑗 ∈ [𝑁1], denote the number of

columns corresponding to the 𝑗-th leaf. “Gluing” the solutions is done by solving 𝑁1 DP instances

with 𝛼1, . . . , 𝛼𝑁1
stages, where

∑𝑁1

𝑖=1
𝛼𝑖 = 𝑛. This takes time

∑𝑁1

𝑖=1
|𝑅 |2 · 𝛼𝑖 ≤ (2∥𝐴∥∞𝜌 + 1)td𝐷 (𝐴) · 𝑛,

since a td-decomposition of each column is a path on td𝐷 (𝐴) vertices. In total, computing the first

level of recursion takes time (2∥𝐴∥∞𝜌 + 1)td𝐷 (𝐴)𝑛.
Consider a recursion level ℓ ∈ [2, th(𝐹)] and subproblem (8). The crucial observation is that

when the algorithm asks for the answer to (8) for one specific r′ ∈ 𝑅, an answer for all r ∈ 𝑅 is

computed; recall that the last step of the DP is to return 𝐷 (𝑑, r′) but the table contains an entry

𝐷 (𝑑, r) for all r ∈ 𝑅. Thus the time needed for the computation of all g𝑖r has been accounted for

in lower levels of the recursion and we only have to account for the DP at the level ℓ . Let 𝑅′ be
the analogue of 𝑅 for a specific subproblem at level ℓ , and let 𝐴′ be the corresponding submatrix

of 𝐴 and 𝐹 ′ ⊆ 𝐹 be a td-decomposition of 𝐺𝐷 (𝐴′). We have that |𝑅′ | ≤ (2∥𝐴∥∞𝜌 + 1)𝑘1 (𝐹 ′)
, with

𝑘1 (𝐹 ′) ≤ td𝐷 (𝐴). Note that the levels here are defined bottom up, hence all leaves are at level 1,

and an inner node of 𝐹 is at level ℓ if ℓ − 1 is the largest level of its children; in particular a level

does not correspond to the distance from the root. Let 𝑁ℓ be the number of vertices of 𝐹 at level ℓ .

The number of subproblems on level ℓ is exactly 𝑁ℓ , so computation of the ℓ-th level takes time at

most |𝑅 |2 ·𝑁ℓ ≤ (2∥𝐴∥∞𝜌 + 1)td𝐷 (𝐴)𝑁ℓ . Adding up across all levels we get that the total complexity

is at most

(
𝑛 +∑

th(𝐹)
ℓ=2

𝑁ℓ

)
· (2∥𝐴∥∞𝜌 + 1)td𝐷 (𝐴) where ∑

th(𝐹)
ℓ=2

𝑁ℓ < 𝑛 since 𝐹 has 𝑛 leaves and each

level corresponds to a vertex with degree at least 2. The lemma follows. □

3.7 The Proof
Proof of Theorem 3. We run two algorithms in parallel, terminate when one of them termi-

nates, and return its result. In the primal algorithm, let 𝐺 (𝐴) = 𝐺𝑃 (𝐴), td(𝐴) = td𝑃 (𝐴) and 𝑝 = ∞.
In the dual algorithm, let 𝐺 (𝐴) = 𝐺𝐷 (𝐴), td(𝐴) = td𝐷 (𝐴) and 𝑝 = 1. The description of both

algorithms is then identical.

First, run the algorithm of Proposition 20 on 𝐺 (𝐴) to obtain its optimal td-decomposition. By

Lemmas 27 and 29 there is a computable function 𝑔′ such the maximum ℓ𝑝-norm of elements of

G(𝐴) is bounded by 𝑔′ (∥𝐴∥∞, td(𝐴)). By Lemmas 30 and 31, there is a computable function 𝑔′′ such
that (AugIP) is solvable in time 𝑔′′ (𝑔′ (td(𝐴), ∥𝐴∥𝑝), ∥𝐴∥𝑝 , td(𝐴)) and thus in time 𝑔(∥𝐴∥𝑝 , td(𝐴))
for some computable function 𝑔. Then, solve (IP) using the algorithm of Corollary 14 in the claimed

time. □

4 STRONGLY POLYNOMIAL ALGORITHMS
Parametric, arithmetic, numeric input. To clearly state our results and compare them to previous

work we introduce the following terminology. The input to a problem will be partitioned into

three parts (𝛼, 𝛽,𝛾), where 𝛼 is the parametric input, 𝛽 is the arithmetic input, and 𝛾 is the numeric

input. The time an algorithm takes to solve a problem is the number of arithmetic operations and

oracle queries, and all numbers involved in the computation are required to have length polynomial

in (𝛽,𝛾). A polynomial algorithm for the problem is one that solves it in time poly(𝛽,𝛾), while
a strongly-polynomial algorithm solves it in time poly(𝛽), i.e., independent of the numeric input.

Similarly, a fixed-parameter tractable (FPT) algorithm solves the problem in time 𝑔(𝛼)poly(𝛽,𝛾),
while a strongly FPT algorithm solves it in time 𝑔(𝛼)poly(𝛽), where 𝑔 is a computable function.

If such an algorithm exists, we say that the problem is (strongly) fixed-parameter tractable (FPT)
parameterized by 𝛼 . Having multiple parameters 𝛼1, . . . , 𝛼𝑘 simultaneously is understood as taking

the aggregate parameter 𝛼 = 𝛼1 + · · · + 𝛼𝑘 . When we want to highlight the fact that an oracle is

involved (e.g., when the oracle calls are expected to take a substantial portion of the time), we say

that the algorithm works in certain (polynomial, strongly polynomial, FPT, etc.) oracle time. Each

Integer Programming Notes / Winter 22/23 17

part of the input may have several entities, which may be presented in unary or binary. For the

parametric input the distinction between unary and binary is irrelevant, but it defines the function

𝑔.

We will use the notion of centering an instance at a vector v ∈ Z𝑛 . For an (IP) instance I, let
Sol(I) := {x ∈ Z𝑛 | 𝐴x = b, l ≤ x ≤ u} denote the set of feasible solutions of I. The next lemma

follows by a simple translation, hence we omit its proof.

Lemma 32 (Eqivalent centered instance). Let an (IP) instance I be given, and v ∈ Z𝑛 . Define
an (IP) instance

¯I = (𝐴, ¯𝑓 , ¯b, ¯l, ū) by
¯b := b −𝐴v, ¯l := l − v, ū := u − v, ¯𝑓 (x) := 𝑓 (x − v) .

The translation 𝜏 (x) = x + v is a bijection from Sol(¯I) to Sol(I). Moreover, x is an optimal solution

of
¯I if and only if 𝜏 (x) is an optimal solution of I. If v ∈ Sol(I), then ¯b = 0, and 0 is feasible for

¯I.
We say that the translated instance

¯I was obtained from I by centering it at v. When beneficial,

we will move to the centered instance
¯I, recovering an optimum of I eventually.

Theorem 33. Problem (ILP) with arithmetic input ⟨𝐴⟩ and numeric input ⟨w, b, l, u⟩, endowed with
an oracle solving (AugIP), is solvable in strongly polynomial oracle time.

Note that the partition of the input to the arithmetic input ⟨𝐴⟩ and the numeric input ⟨w, b, l, u⟩
is the same as in the classical results for linear programming [8, 23]. Together with the algorithms

we showed for solving (AugIP), Theorem 33 immediately yields that:

Corollary 34. There exists a computable function 𝑔 such that problem (ILP) can be solved in time

𝑔(𝑎, 𝑑)poly(𝑛), where 𝑑 := min{td𝑃 (𝐴), td𝐷 (𝐴)} .
Let C(𝐴) be the set of circuits of 𝐴, which are those c ∈ kerZ (𝐴) whose support is a circuit of

the linear matroid of 𝐴 and whose entries are coprime. Let 𝑐∞ (𝐴) := maxc∈C(𝐴) ∥c∥∞. It is known
that C(𝐴) ⊆ G(𝐴) [18, Definition 3.1] and thus 𝑐∞ (𝐴) ≤ 𝑔∞ (𝐴).

Proposition 35 (Onn [18, Lemma 2.17]). For any x ∈ ker(𝐴), x may be written as

∑𝑛′
𝑖=1
𝜆𝑖g𝑖

where 𝑛′ ≤ 𝑛 − 𝑟 with 𝑟 := rank(𝐴), and for all 𝑖 ∈ [𝑛′], 𝜆𝑖 > 0, g𝑖 ∈ C(𝐴), and 𝜆𝑖g𝑖 ⊑ x, i.e., the
sum is sign-compatible.

Proof of Theorem 33. The algorithm which demonstrates the theorem has several steps.

Step 1: Relaxation oracle and proximity bound (i.e., reducing b, l, u.) Apply the strongly polynomial

algorithm of Tardos [23] to the linear programming relaxationmin {wy | y ∈ R𝑛, 𝐴y = b, l ≤ y ≤ u};
the algorithm performs poly(⟨𝐴⟩) arithmetic operations. If the relaxation is infeasible then so is

(ILP) and we are done. If it is unbounded then (ILP) is either infeasible or unbounded too, and in

this case we set w := 0 so that all solutions are optimal, and we proceed as below and terminate at

the end of step 3. Suppose then that we obtain an optimal solution y∗ ∈ R𝑛 to the relaxation, with

round down ⌊y∗⌋ ∈ Z𝑛 . By Lemma 16 we have 𝑐∞ (𝐴) ≤ 𝑔∞ (𝐴) ≤ 𝑔1 (𝐴) ≤ (2𝑚∥𝐴∥∞ + 1)𝑚 .
We now use the proximity results of [12, 13] (see Theorem 40) which assert that either (ILP) is FIX

infeasible or it has an optimal solution x∗ with ∥x∗ − y∗∥∞ ≤ 𝑛𝑐∞ (𝐴) and hence ∥x∗ − ⌊y∗⌋∥∞ <

𝑛(2𝑚∥𝐴∥∞ + 1)𝑚 + 1, where the “+1” is due to the round-down of y∗. Since both sides are integers,

we have ∥x∗ − ⌊y∗⌋∥∞ ≤ 𝑛(2𝑚∥𝐴∥∞ + 1)𝑚 . Thus, making the variable transformation x = z + ⌊y∗⌋
(i.e., recentering the instance at ⌊y∗⌋), problem (ILP) reduces to the following,

min {w(z + ⌊y∗⌋) | z ∈ Z𝑛 , 𝐴(z + ⌊y∗⌋) = b , l ≤ z + ⌊y∗⌋ ≤ u , ∥z∥∞ ≤ 𝑛(2𝑚∥𝐴∥∞ + 1)𝑚} ,
which is equivalent to the program

min

{
wz | z ∈ Z𝑛 , 𝐴z = ¯b , ¯l ≤ z ≤ ū

}
, where (9)

18 M. Koutecký

¯b := b−𝐴⌊y∗⌋, ¯𝑙𝑖 := max

{
𝑙𝑖 − ⌊𝑦∗𝑖 ⌋,−𝑛(2𝑚∥𝐴∥∞ + 1)𝑚

}
, 𝑢𝑖 := min

{
𝑢𝑖 − ⌊𝑦∗𝑖 ⌋, 𝑛(2𝑚∥𝐴∥∞ + 1)𝑚

}
.

If some
¯𝑙𝑖 > 𝑢𝑖 then (9) is infeasible and hence so is (ILP), so we may assume that

−𝑛(2𝑚∥𝐴∥∞ + 1)𝑚 ≤ ¯𝑙𝑖 ≤ 𝑢𝑖 ≤ 𝑛(2𝑚∥𝐴∥∞ + 1)𝑚, for all 𝑖 ∈ [𝑛] .
This implies that for every point z feasible for (9), ∥𝐴z∥∞ ≤ 𝑛2∥𝐴∥∞ (2𝑚∥𝐴∥∞ + 1)𝑚 holds and

so we may assume that ∥¯b∥∞ ≤ 𝑛2∥𝐴∥∞ (2𝑚∥𝐴∥∞ + 1)𝑚 else there is no feasible solution. By𝑚 ≤ 𝑛
(see Proposition 2) we have

∥¯b, ¯l, ū∥∞ ≤ 2
O(𝑛 log𝑛) ∥𝐴∥O(𝑛)∞ and hence ⟨¯b, ¯l, ū⟩ is polynomial in ⟨𝐴⟩ .

Step 2: Feasibility oracle. The next step is to find an integer solution to the system of equations

𝐴z = ¯b, and then to use this solution in an auxiliary problem with relaxed bounds to find an initial

feasible solution to (9). This is exactly the purpose of Lemma 13. Crucially, its bound on the number

of calls to an (AugIP) oracle and the time to compute an integral solution of 𝐴z = ¯b only depends

on ⟨𝐴, ¯b, ¯l, ū⟩ and not on the objective function w.

Step 3: Reducibility bound (i.e., reducing w). Let 𝑁 := 2𝑛(2𝑚∥𝐴∥∞ + 1)𝑚 . Now apply the strongly

polynomial algorithm of Frank and Tardos [8], which on arithmetic input 𝑛, ⟨𝑁 ⟩ and numeric

input ⟨w⟩, outputs w̄ ∈ Z𝑛 with ∥w̄∥∞ ≤ 2
O(𝑛3)𝑁 O(𝑛

2)
such that sign(wx) = sign(w̄x) for all

x ∈ Z𝑛 with ∥x∥1 < 𝑁 . Since ⟨𝑁 ⟩ = 1 + ⌈log𝑁 ⌉ = O(𝑛 log𝑛 + 𝑛 log ∥𝐴∥∞) is polynomial in ⟨𝐴⟩,
this algorithm is also strongly polynomial in our original input. Now, for every two points x, z
feasible in (9) we have ∥x − z∥1 < 2𝑛(2𝑚∥𝐴∥∞ + 1)𝑚 = 𝑁 , so that for any two such points we have

wx ≤ wz if and only if w̄x ≤ w̄z, and therefore we can replace (9) by the equivalent program

min

{
w̄z | z ∈ Z𝑛, 𝐴z = ¯b, ¯l ≤ z ≤ ū

}
, where (10)

∥w̄∥∞ = 2
O(𝑛3

log𝑛) ∥𝐴∥O(𝑛
3)

∞ and hence ⟨w̄, ¯b, ¯l, ū⟩ is polynomial in ⟨𝐴⟩.

Step 4: Augmentation oracle. Starting from the point z which is feasible in (10) and using the

(AugIP) oracle, we can solve program (10) using Lemma 12 in polynomial time and in a number of

arithmetic operations and oracle queries which is polynomial in𝑛 and in log(𝑓max), which is bounded
by log

(
𝑛∥w̄∥∞∥ū − ¯l∥∞

)
, which is polynomial in ⟨𝐴⟩, and hence strongly polynomially. □

5 PROXIMITY, SENSITIVITY, SCALING
We consider the following fractional relaxation of (IP).

min {𝑓 (x) | 𝐴x = b, l ≤ x ≤ u, x ∈ R𝑛} . (P)

In the context of non-linear functions we run into the possibility of irrational optima. Hochbaum

and Shanthikumar [13, Section 1.2] argue in favor of the notion of an 𝜖-accurate optimum, which

is a solution of (P) close to some optimum in terms of distance, not necessarily objective value.

Moreover, they show that under reasonable assumptions on the objective such an optimum is also

close in terms of objective value.

Definition 36 (𝜖-accuracy [13]). Let x𝜖 be a feasible solution of (P). We say that x𝜖 is an 𝜖-accurate
solution if there exists an optimum x∗ of (P) with ∥x∗ − x𝜖 ∥∞ ≤ 𝜖 .

Proximity bounds relate an optimum of (P) (or an 𝜖-accurate solution) to an optimum of (IP),

for example in order to reduce the bounds l, u and subsequently the right hand side b. We will

use a general definition of proximity from Cslovjecsek et al. [2] which is independent of the

objective function, and which gives proximity guarantees for linear and separable convex functions

(Lemma 38 below):

Integer Programming Notes / Winter 22/23 19

Definition 37 (Conformal proximity bound). Let 1 ≤ 𝑝 ≤ +∞. We say that P𝑝 (𝐴) ≥ 0 is the

conformal ℓ𝑝 -proximity bound of 𝐴 if it is the infimum of reals 𝜌 ≥ 0 satisfying the following: for

every IP of the form (IP) with 𝐴 as the constraint matrix, for every fractional solution x of (P) and

every integer solution z of (IP), there is an integer solution z′ of (IP) such that

∥x − z′∥𝑝 ≤ 𝜌 and z′ ⊑ x − z .

The condition that z′ ⊑ x − z is equivalent to saying that z′ is contained in an axis-parallel box

spanned by x and z. Let us show that this implies proximity of fractional and integer optima for IPs

with separable convex objectives:

Lemma 38. Let x̂ be an optimum of (P) and ẑ be an optimum of (IP). There exist x∗ ∈ R𝑛 and

z∗ ∈ Z𝑛 optima of (P) and (IP), respectively, such that

∥x̂ − z∗∥𝑝 = ∥x∗ − ẑ∥𝑝 ≤ P𝑝 (𝐴) .

We will use a straight-forward proposition which follows from Proposition 8:

Proposition 39. Let x, y
1
, y

2
∈ R𝑛 , y

1
, y

2
be from the same orthant, and 𝑓 be a separable convex

function. Then

𝑓 (x + y
1
+ y

2
) − 𝑓 (x + y

1
) ≥ 𝑓 (x + y

2
) − 𝑓 (x) .

Proof. Apply Proposition 8 with x := x, g
1

:= y
1
, g

2
:= y

2
, and 𝜆1, 𝜆2

:= 1, to get

𝑓 (x + y
1
+ y

2
) − 𝑓 (x) ≥

(
𝑓 (x + y

1
) − 𝑓 (x)

)
+

(
𝑓 (x + y

2
) − 𝑓 (x)

)
= 𝑓 (x + y

1
) + 𝑓 (x + y

2
) − 2𝑓 (x) .

Adding 2𝑓 (x) to both sides and rearranging then yields the statement. □

Proof. By Definition 37, there exists a z∗ ∈ Z𝑛 with z∗ ⊑ x̂ − ẑ and ∥z∗ − x̂∥𝑝 ≤ P𝑝 (𝐴). Let
g = x̂ − z∗ and ḡ = z∗ − ẑ and note that x̂ = ẑ + g + ḡ. Now define

x∗ := ẑ + g, z∗ := ẑ + ḡ = x̂ − g .

By the fact that both ẑ and x̂ lie within the bounds l and u and that both g and ḡ are conformal to

x̂ − ẑ, we see that both x∗ and z∗ also lie within the bounds l and u. Thus x∗ is a feasible solution
of (P) and z∗ is a feasible solution of (IP). We can also write

x̂ − ẑ = (x∗ − ẑ) + (z∗ − ẑ),
which, using Proposition 39 with values x = ẑ, y

1
= g, y

2
= ḡ, gives

𝑓 (x̂) − 𝑓 (x∗) ≥ 𝑓 (z∗) − 𝑓 (ẑ) .
Since x̂ is a continuous optimum and x∗ is a feasible solution to (P), the left hand side is non-positive,
and so is 𝑓 (z∗) − 𝑓 (ẑ). But since ẑ is an integer optimum it must be that z∗ is another integer
optimum and thus 𝑓 (ẑ) = 𝑓 (z∗), and subsequently 𝑓 (x∗) = 𝑓 (x̂) and thus x∗ is another continuous
optimum. □

Basic Proximity Theorem. For any separable convex function 𝑓 , P∞ (𝐴, 𝑓) ≤ 𝑛𝑔∞ (𝐴) due to

Hemmecke, Köppe and Weismantel [12]. Now, we show that a careful analysis of a proof of

Hemmecke, Köppe and Weismantel [12] allows us to extend their theorem to additionally provide

an ℓ𝑝 -norm bound, for any 𝑝 with 1 ≤ 𝑝 ≤ +∞. Moreover, it is a consequence of Lemma 38 that for

each integer optimum there is a continuous optimum nearby, which extends the result of [12] in

the spirit of Hochbaum and Shanthikumar [13]. Note that obviously any 𝑝-norm proximity bound

implies an ℓ∞-norm proximity bound, i.e., P∞ (𝐴, 𝑓) ≤ P𝑝 (𝐴, 𝑓) for any 1 ≤ 𝑝 < ∞.

Theorem 40 (Basic Proximity). P𝑝 (𝐴) ≤ 𝑛𝑐𝑝 (𝐴).

20 M. Koutecký

x1

x2

l1 u1

u2

l2

ẑ

x̂

x̂− ẑ

ḡ = z∗ − ẑ

z∗

g = x̂− z∗g

x∗ = ẑ+ g

Fig. 2. The situation of Lemma 38: the feasible region between lower and upper bounds is the light grey
rectangle; the dark grey rectangle marks the region of vectors which, when translated to ẑ, are conformal to
x̂ − ẑ. The picture makes it clear that g and ḡ are conformal to x̂ − ẑ, and that the identity x̂ = ẑ + g + ḡ holds.

Proof of Theorem 40. Let z be a solution of (IP) and x a solution of (P). By Proposition 35, we

may write x − z as a sign-compatible sum

∑𝑛′
𝑖=1
𝜆𝑖g𝑖 where 𝑛

′ ≤ 𝑛 − 𝑟 with 𝑟 = rank(𝐴), and, for all
𝑖 ∈ [𝑛′], g𝑖 ∈ C(𝐴) ⊆ G(𝐴), 𝜆𝑖 ∈ R>0, and 𝜆𝑖g𝑖 ⊑ x−z. Write x−z =

∑𝑛′
𝑖=1
⌊𝜆𝑖⌋g𝑖+

∑𝑛′
𝑖=1
{𝜆𝑖 }g𝑖 , where

{𝜆} := 𝜆 − ⌊𝜆⌋ denotes the fractional part of 𝜆. Now define z′ := z +∑𝑛′
𝑖=1
⌊𝜆𝑖⌋g𝑖 = x −∑𝑛′

𝑖=1
{𝜆𝑖 }g𝑖 .

Clearly z′ is conformal to x − z and integer.

Let us now compute the proximity. The following derivation is invariant under the norm bound

on the elements of C(𝐴):

∥x − z′∥ = ∥
𝑛′∑︁
𝑖=1

{𝜆𝑖 }g𝑖 ∥ ≤ 𝑛′ max

𝑖=1,...,𝑛
∥g𝑖 ∥ ≤ 𝑛 max

g∈C(𝐴)
∥g∥ = 𝑛𝑐𝑝 (𝐴),

where the first equality follows by definition of z′, and the claim follows. □

5.1 Scaling and Proximity
The goal of this section is to describe an algorithm which iteratively refines a solution, eventually

leading to an optimal solution. In each iteration, the algorithm solves an instance whose bounding

box is potentially much smaller than in the original instance, specifically O(𝜌) where 𝜌 ≥ P∞ (𝐴),
for example 𝜌 = 𝑛𝑐∞ (𝐴). The motivation for these results was taken from the techniques in [13].

Integer Programming Notes / Winter 22/23 21

We lay out the approach more specifically. Assume for now that 0 is a feasible solution, i.e. we

are concerned with the following IP:

min {𝑓 (x) : 𝐴x = 0, l ≤ x ≤ u, x ∈ Z𝑛} . (11)

Instead of looking for a solution in the lattice x ∈ Z𝑛 , we first look for a solution in the scaled

lattice z ∈ 𝑠Z𝑛 = {𝑠x | x ∈ Z𝑛}, for some 𝑠 ∈ Z≥1.

min {𝑓 (x) : 𝐴x = 0, l ≤ x ≤ u, x ∈ 𝑠Z𝑛} . (𝑠-lattice IP)

Observe that both systems have the same continuous relaxation. Hence, an optimal solution x∗ to the
continuous relaxation of (11) is also an optimal solution to the continuous relaxation of (𝑠-lattice IP).

With this, we can relate an optimal solution z∗ of (11) to an optimal solution ẑ of (𝑠-lattice IP).

Theorem 41 (Scaling proximity). Let an IP (11) be given, 𝑠 ∈ Z≥1 and 1 ≤ 𝑝 ≤ +∞. For every
optimal solution z∗ of (11), there exists an optimal solution ẑ of (𝑠-lattice IP) such that

∥z∗ − ẑ∥𝑝 ≤ (𝑠 + 1)P𝑝 (𝐴) .
Vice versa, for every ẑ optimum of (𝑠-lattice IP), there is an optimum z∗ of (11) satisfying ∥z∗ − ẑ∥𝑝 ≤
(𝑠 + 1)P𝑝 (𝐴).

Proof. We will show one direction, as the other direction is symmetric. Let z∗ be an optimum

solution of (11). By Definition 37 and Lemma 38, there exists an optimum x∗ to the continuous

relaxation (P) with

∥z∗ − x∗∥𝑝 ≤ P𝑝 (𝐴) . (12)

As the continuous relaxations coincide, x∗ is also an optimum to the continuous relaxation

of (𝑠-lattice IP). Substituting x′ := 1

𝑠
x, we obtain an objective-value preserving bijection between

the solutions of (𝑠-lattice IP) and the solutions of the 𝑠-scaled IP

min

{
𝑓 (𝑠x′) : 𝐴x′ = 0, l

𝑠
≤ x′ ≤ u

𝑠
, x′ ∈ Z𝑛

}
. (13)

In particular, x̄ := 1

𝑠
x∗ is an optimum solution to the continuous relaxation of (13).

Again by proximity, the instance (13) has an optimal solution z̄ with

∥x̄ − z̄∥𝑝 ≤ P𝑝 (𝐴) ⇔ ∥𝑠x̄ − 𝑠 z̄∥𝑝 ≤ 𝑠 · P𝑝 (𝐴) (14)

Substituting back, ẑ := 𝑠 z̄ is an optimal solution to (𝑠-lattice IP). The claim follows by triangle

inequality: ∥z∗ − ẑ∥𝑝 ≤ ∥z∗ − x∗∥𝑝 + ∥x∗ − ẑ∥𝑝 ≤ (𝑠 + 1)P𝑝 (𝐴). □

5.2 Scaling algorithm.
As a 2

𝑘
-scaled instance is also a 2-scaled instance of a 2

𝑘−1
-scaled instance, this gives the following

idea for an algorithm to solve a general (IP). The algorithm is parameterized by some upper bound

𝜌 on the proximity bound P∞ (𝐴).
(1) Find an initial feasible solution x0, and recenter the instance at x0, obtaining (11) where 0

is feasible. Let 𝑘 = log
2
(max(∥u∥∞ , ∥l∥∞)) + 1, and set x𝑘 := 0. As it is the only feasible

solution of a 2
𝑘
-scaled instance, x𝑘 is also its optimal solution.

(2) If 𝑘 > 0, intersect the box constraints of the 2
𝑘−1

-scaled instance with the proximity bounds

∥x𝑘 − x∥∞ ≤ 3𝜌 . Solve this instance with initial solution x𝑘 to optimality, and let x𝑘−1

denote the optimum found. Update 𝑘 ← 𝑘 − 1 and repeat.

(3) Output x0.

The bound of 3𝜌 in step (2) follows from the fact that we are viewing the 2
𝑘
-scaled instance as an

𝑠 = 2-scaled instance of the 2
𝑘−1

-scaled instance, and the 3 = 𝑠 + 1 in the bound of Theorem 41.

Analyzing the running time, we obtain the following corollary.

22 M. Koutecký

Corollary 42. Given an instance of (IP) with finite bounds, a 𝜌 ≥ P∞ (𝐴), and an initial feasible

solution x0, we can find an optimum of (IP) by solving 2 log ∥u − l∥∞ instances of (IP) with right-hand

side
¯b = 0, the lower and upper bounds ¯l, ū of any instance satisfy

ū − ¯l

∞ ≤ 6𝜌 , and each instance is

given with an initial feasible solution.

The feasibility problem can be solved by one of the methods described in [? , Section 3.4], for

example, by solving a feasibility ILP with a constraint matrix (𝐴 𝐼) using the same scaling algorithm.

Proof. Given an initial feasible solution x0, we center the original instance at x0 using the

translation 𝜏 (x) = x + x0, which transforms its right hand side to b − 𝐴x0 = 0 as required (see

Lemma 32). It is clear that we need at most log(∥u − l∥∞) iterations, in each of which we apply

Theorem 41 with 𝑠 = 2 to the bounds
¯l, ū. □

5.3 Solving (P) by Scaling
Once we reached an optimal solution in (IP), we could continue scaling, and look for a solution in

the superlattice
1

2
Z𝑛 . Continuing further, this can be used to find a 2

−𝑘
-accurate solution for the

continuous relaxation of (IP).

The following is a simple corollary of Theorem 40, applied to the 𝑠-scaled instance (13) with the

respective parameters.

Corollary 43 (Solving (P) by solving (𝑠-lattice IP)). Let 𝜖 > 0. Then an optimal solution

for (𝑠-lattice IP) is an 𝜖-accurate solution of (P) for any 𝑠 ≤ 𝜖
P∞ (𝐴) .

This corollary immediately motivates an algorithm for finding an 𝜖-accurate solution for the

continuous problem (P).

Theorem 44. Let 𝜖 > 0 and 𝜌 ≥ P∞ (𝐴). We can find an 𝜖-accurate solution to (P) by making

O
(
log(∥u − l∥∞) + log

𝜌

𝜖

)
steps of the scaling algorithm. Each step means solving an (IP) instance with parameters bounded as in

Corollary 42.

Proof. Let 𝑘 := 2 log(∥u − l∥∞ + 1). The first 𝑘 iterations of the algorithm refine the grid from

2
𝑘Z𝑛 to Z𝑛 . The following 2 log

𝜌

𝜖
iterations further refine the grid from Z𝑛 to

𝜌

𝜖
Z𝑛 . By Corollary 43,

the optimum of the last instance is an 𝜖-approximate solution of (IP). □

5.4 Fast Primal Algorithm
In the following we will describe an instantiation of the scaling algorithm which is efficient when

𝐴 has small td𝑃 (𝐴) and ∥𝐴∥∞, e.g. when it is a 2-stage or a multi-stage stochastic matrix with small

coefficients. Formally,

Theorem 45. There is an algorithm which solves (IP) in time 𝑔(td𝑃 (𝐴), ∥𝐴∥∞)𝑛 log ∥u − l∥∞ for

some computable function 𝑔.

The function 𝑔 depends on 𝑔∞ (𝐴) and the proximity bound P∞ (𝐴). The currently best known

bounds for both are triple-exponential in terms of td𝑃 (𝐴) [15, Corollary 2.1, Lemma 2.3], and this

seems to be optimal for 𝑔∞ (𝐴).. Since the exact dependence of 𝑔 on td𝑃 (𝐴) and ∥𝐴∥∞ is not theTODO

focus of this work, we shall simply focus on proving the theorem in its stated form.

We will use a recent result of Klein and Reuter [15] (improving on Cslovjecsek et al. [2]) which

gives a bound on P∞ (𝐴) independent of 𝑛:
Proposition 46 ([15, Lemma 2.3]). There is a computable function 𝑔′ such that

P∞ (𝐴) ≤ 𝑔′ (td𝑃 (𝐴), ∥𝐴∥∞) .

Integer Programming Notes / Winter 22/23 23

Proof of Theorem 45. A run of the scaling algorithm consists of log ∥u− l∥∞ iterations, each of

which requires solving an IP with bounds
¯l, ū satisfying ∥ū−¯l∥∞ ≤ 6𝜌 , with a right hand side

¯b = 0,
with the constraint matrix 𝐴, and with an objective function

¯𝑓 which is defined as
¯𝑓 (x) = 𝑓 (𝑠x)

for some scaling factor 𝑠 . Specifically, ¯𝑓 is separable convex if 𝑓 was.

[? , Lemma 25] shows that such an IP can be solved in time td𝑃 (𝐴)2 (12𝜌 + 1)td𝑃 (𝐴)𝑛 by a

simple branching algorithm. Taking 𝑔(td𝑃 (𝐴), ∥𝐴∥∞) = td𝑃 (𝐴)2 (12𝜌 + 1)td𝑃 (𝐴) and the fact that

𝜌 = 𝑔′ (td𝑃 (𝐴), ∥𝐴∥∞) for some computable function 𝑔′ (by Proposition 46,), the claim is shown. □

24 M. Koutecký

Applications: Computational Social Choice

6 INTRO TO COMPUTATIONAL SOCIAL CHOICE
6.1 Voting, Elections, Bribing

Elections. An election (𝐶,𝑉) consists of a set 𝐶 of candidates and a set 𝑉 of voters, who indicate

their preferences over the candidates in 𝐶 . There are many ways in which a voter’s preferences

can be modeled; here we use a variant of the ordinal model, where each voter 𝑣 ’s preferences

are represented via a preference order ≻𝑣 which is a total order over 𝐶 unless stated otherwise. In

some problems we study voters who indicate their preferences only for their “top candidates”; we

model this with “truncated orders”. For an integer 𝑡 ∈ N, a preference order ≻𝑣 is 𝑡-top-truncated
if there is a permutation 𝜋 over {1, . . . , |𝐶 |} such that ≻𝑣 is of the form 𝑐𝜋 (1) ≻𝑣 · · · ≻𝑣 𝑐𝜋 (𝑡) ≻𝑣{
𝑐𝜋 (𝑡+1) , . . . , 𝑐𝜋 (|𝐶 |)

}
; that is, 𝑣 is indifferent among the members of the set

{
𝑐𝜋 (𝑡+1) , . . . , 𝑐𝜋 (|𝐶 |)

}
which we call unranked candidates; we refer to

{
𝑐𝜋 (1) , . . . , 𝑐𝜋 (𝑡)

}
as to the ranked candidates. For

a ranked candidate 𝑐 we denote by rank(𝑐, 𝑣) their rank in ≻𝑣 ; then 𝑣 ’s most preferred candidate

has rank 1 and their least preferred candidate has rank |𝐶 |. Also, for 𝑡-top-truncated preference

orders ≻𝑣 it holds that rank(𝑐, 𝑣) ≤ 𝑡 for all ranked candidates 𝑐 ∈ 𝐶 . We note here that if ≻𝑣 is
a weak order (or bucket order), i.e., when it is a linear order over disjoint groups of candidates

with the voter having no preference over candidates in one group, we may replace it with any

linear extension of ≻𝑣 and set the cost of swapping (see below) two candidates 𝑐, 𝑐′ to 0 whenever

rank(𝑐, 𝑣) = rank(𝑐′, 𝑣) in the original order. Independently of voters, for the set of candidates 𝐶

we also refer to a linear order ≻𝐶 over 𝐶 as to a ranking of 𝐶 (i.e., ranking is a shorthand for a

linear order on candidates). For distinct candidates 𝑐, 𝑐′ ∈ 𝐶 , we write 𝑐 ≻𝑣 𝑐′ if voter 𝑣 prefers 𝑐
over 𝑐′. To simplify notation, we sometimes identify the candidate set 𝐶 with the set {1, . . . , |𝐶 |},
in particular when expressing permutations over 𝐶 . All studied problems designate a candidate

in 𝐶; we always denote it by 𝑐★.

Next, we describe the actions by which we perturb a given election (𝐶,𝑉). Applying a set Γ of

actions to (𝐶,𝑉) yields a perturbed election that we denote by (𝐶,𝑉)Γ . Performing an action incurs

a cost; we specify these costs by functions that for each voter 𝑣 ∈ 𝑉 specify their individual cost of

performing the action.

6.2 Actions for Manipulation
Swaps. Let (𝐶,𝑉) be an election, let 𝑣 ∈ 𝑉 be a voter, and let ≻𝑣 be their preference order. For

candidates 𝑐, 𝑐′ ∈ 𝐶 , a swap 𝑠 = (𝑐, 𝑐′)𝑣 means to exchange the positions of 𝑐 and 𝑐′ in ≻𝑣 ; denote
the perturbed order by ≻𝑠𝑣 . A swap (𝑐, 𝑐′)𝑣 is admissible in ≻𝑣 if rank(𝑐, 𝑣) = rank(𝑐′, 𝑣) − 1. A set 𝑆

of swaps is admissible in ≻𝑣 if they can be applied sequentially in ≻𝑣 , one after the other, in some

order, such that each one of them is admissible. Note that the perturbed vote, denoted by ≻𝑆𝑣 , is
independent from the order in which the swaps of 𝑆 are applied. We also extend this notation

for applying swaps in several votes and denote it 𝑉 𝑆 . We specify 𝑣 ’s cost of swaps by a function

𝜎𝑣 : 𝐶 ×𝐶 → Z. A special case of swaps are “shifts”, where we want to make 𝑐★ win the perturbed

election by shifting them forward in some of the votes, at an appropriate cost, without exceeding a

given budget. Shifts can be modeled by swaps only involving 𝑐★.

Push actions. Let (𝐶,𝑉) be an election. In certain voting rules, such as SP-AV or Fallback (to

be defined below), each voter 𝑣 ∈ 𝑉 additionally has an approval count 𝑎𝑣 ∈ {0, . . . , |𝐶 |}. Voter
𝑣 ’s approval count1 𝑎𝑣 indicates that they approve the top-ranked 𝑎𝑣 many candidates in their

preference order, and disapprove all others. A “push action” can change a voter’s approval count:

1
See Scoring protocols for the definition.

Integer Programming Notes / Winter 22/23 25

formally, for voter 𝑣 and 𝑡 ∈ {−𝑎𝑣, . . . , |𝐶 | −𝑎𝑣}, a push action 𝑝𝑣 = 𝑡 changes their approval count to
𝑎𝑣 + 𝑡 . We specify the cost of push actions by a function 𝜋 𝑣 : {−𝑎𝑣, . . . , |𝐶 | − 𝑎𝑣} → Z; we stipulate
that 𝜋 𝑣 (0) = 0. If a voter 𝑣 is involved in a swap or a push action, a one-time influence cost 𝜄𝑣 occurs.

Control changes. Let (𝐶,𝑉) be an election. We partition the set 𝑉 into a set 𝑉𝑎 of active voters

and a set 𝑉ℓ of latent voters. Only active voters participate in an election, but through a “control

change” latent voters can become active or active voters can become latent. (If no partition of 𝑉

into 𝑉𝑎 and 𝑉ℓ is specified, then we implicitly assume that 𝑉 = 𝑉𝑎 .)

Formally, a control change 𝛾 activates some latent voters from 𝑉ℓ and deactivates some active

voters from 𝑉𝑎 ; denote the changed set of voters by (𝑉ℓ ∪𝑉𝑎)𝛾 . We denote the cost of activating

voter 𝑣 ∈ 𝑉ℓ by 𝛼𝑣 and the cost of deactivating voter 𝑣 ∈ 𝑉𝑎 by 𝛿𝑣 .

6.3 Voting rules
A voting rule R is a function that maps an election (𝐶,𝑉) to a subset𝑊 ⊆ 𝐶 , called the winners.

We study the following voting rules:

Scoring protocols. A scoring protocol is defined through a vector s = (𝑠1, . . . , 𝑠 |𝐶 |) of integers with
𝑠1 ≥ · · · ≥ 𝑠 |𝐶 | ≥ 0. For each position 𝑝 ∈ {1, . . . , |𝐶 |}, the value 𝑠𝑝 specifies the number of points

that each candidate 𝑐 receives from each voter that ranks 𝑐 as 𝑝 th best. Any candidate with the

maximum number of points is a winner. Examples of scoring protocols include the Plurality rule

with s = (1, 0, . . . , 0), the 𝑑-Approval rule with s = (1, . . . , 1, 0, . . . , 0) with 𝑑 ones, and the Borda

rule with s = (|𝐶 | − 1, |𝐶 | − 2, . . . , 1, 0). Throughout, we consider only natural scoring protocols for

which 𝑠1 ≤ |𝐶 |; this is the case for the aforementioned popular rules.

Bucklin. The Bucklin winning round is the (unique) number 𝑘 such that using the 𝑘-approval

rule yields a candidate with more than
𝑛
2
points, but the (𝑘 − 1)-approval rule does not. A Bucklin

winner is then any candidate with the maximum points (over all candidates) when the 𝑘-approval

rule is applied.

Condorcet-consistent rules. A candidate 𝑐 ∈ 𝐶 is a Condorcet winner if any other 𝑐′ ∈ 𝐶 \ {𝑐}
satisfies |{𝑣 ∈ 𝑉 | 𝑐 ≻𝑣 𝑐′}| > |{𝑣 ∈ 𝑉 | 𝑐′ ≻𝑣 𝑐}|. A voting rule is Condorcet-consistent if it selects

the Condorcet winner in case there is one. Fishburn [7] classified voting rules as C1, C2, or C3,

depending on the kind of information needed to determine the winner
2
. For candidates 𝑐, 𝑐′ ∈ 𝐶 let

𝑣 (𝑐, 𝑐′) be the number of voters who prefer 𝑐 over 𝑐′, that is, 𝑣 (𝑐, 𝑐′) = |{𝑣 ∈ 𝑉 | 𝑐 ≻𝑣 𝑐′}|; we write
𝑐 <𝑀 𝑐′ if 𝑐 beats 𝑐′ in a head-to-head contest, that is, if 𝑣 (𝑐, 𝑐′) > 𝑣 (𝑐′, 𝑐).
C1: R is C1 if knowing <𝑀 suffices to determine the winner, that is, for each pair of candidates 𝑐, 𝑐′

we knowwhether 𝑣 (𝑐, 𝑐′) > 𝑣 (𝑐′, 𝑐), 𝑣 (𝑐, 𝑐′) < 𝑣 (𝑐′, 𝑐) or 𝑣 (𝑐, 𝑐′) = 𝑣 (𝑐′, 𝑐). An example is the

Copeland
𝛼
rule for a rational number 𝛼 ∈ [0, 1], which specifies that for each head-to-head

contest between two distinct candidates, if some candidate is preferred by a majority of

voters, then they obtain one point and the other candidate obtains zero points, and if a tie

occurs, then both candidates obtain 𝛼 points; the candidate with largest sum of points is a

winner.

C2: R is C2 if it is not C1 and knowing the exact value of 𝑣 (𝑐, 𝑐′) for all 𝑐, 𝑐′ ∈ 𝐶 suffices to

determine the winner. Examples are the Maximin rule which declares any candidate 𝑐 ∈ 𝐶
a winner who maximizes 𝑣∗ (𝑐) = min{𝑣 (𝑐, 𝑐′) | 𝑐′ ∈ 𝐶 \ {𝑐}}; and the Kemeny rule which

declares any candidate 𝑐 ∈ 𝐶 a winner for whom there exists a ranking ≻𝑅 of𝐶 that ranks 𝑐

2
Sometimes the classification (C1, C2, C3) applies to Condorcet-consistent rules only, i.e., voting rules that guarantee to

select a Condorcet winner as a winner if such a candidate exists. Here, we follow [24] where this is not required.

26 M. Koutecký

first and maximizes the total agreement with voters∑︁
𝑣∈𝑉

��{(𝑐′, 𝑐′′) | ((𝑐′ ≻𝑅 𝑐′′) ⇔ (𝑐′ ≻𝑣 𝑐′′)) ∀𝑐′, 𝑐′′ ∈ 𝐶}��
among all rankings.

C3: R is C3 if it is neither C1 nor C2. Examples are the Dodgson rule which declares any candidate

𝑐 ∈ 𝐶 a winner for whom a minimum number of swaps make them the Condorcet winner of

the manipulated election; and the Young rule which declares any candidate 𝑐 ∈ 𝐶 a winner

for whom removing a minimum number of voters from the election makes 𝑐 the Condorcet

winner of the perturbed election.

Additionally, if approval counts are given for each voter, other voting rules are possible:

Sincere-strategy preference-based approval voting (SP-AV).. Each candidate 𝑐 receives a point from

every voter 𝑣 with rank(𝑐, 𝑣) ≤ 𝑎𝑣 . A candidate with maximum number of points is a winner in the

election.

Fallback. Delete, for each voter 𝑣 ∈ 𝑉 , their unranked candidates (i.e., all 𝑐 with rank(𝑐, 𝑣) > 𝑎𝑣)
from its order. Then, use the Bucklin rule, which might fail to determine a winner due to the

deletion of unranked candidates; in that case, use the SP-AV rule.

6.4 Voter Types, Societies, and Moves
Partition the voters into types such that two voters of the same type are indistinguishable, i.e.,

they have the same preference order, bribery costs, etc. For example, if all bribery costs are unit,

there are 𝜏 ≤ 𝑚! types present in a given election since there are at most𝑚! distinct preference

orders. We order the types arbitrarily so that we can speak of “the 𝑗-th type” for a given 𝑗 ∈ [𝜏]. By
the weight of voters with type 𝑗 , denoted either𝑤 𝑗 or𝑤 (𝑗), as is more convenient, we mean the

number of voters of type 𝑗 . It will be convenient to allow some types to have weight 0. Sometimes

we represent an election as a vector w ∈ N𝜏 , whose 𝑗-th entry represents the weight of type 𝑗 . We

refer to such vectors as societies. Formally, any non-negative vector w ∈ N𝜏 represents a society.
Societies and Moves. In most problems, we are interested in modifying a society by moving

people among types. A move is a vector m = (𝑚1,1, . . . ,𝑚𝜏,𝜏) ∈ Z𝜏
2

. Intuitively,𝑚𝑖, 𝑗 is the number

of people of type 𝑖 turning type 𝑗 .

Definition 47. A change is a vector ∆ = (Δ1, . . . ,Δ𝜏) ∈ Z𝜏 whose elements sum up to 0. We say

that ∆ is the change associated with a move m if, for all 𝑖 ∈ [𝜏], Δ𝑖 =
∑𝜏
𝑗=1
𝑚 𝑗,𝑖 −𝑚𝑖, 𝑗 , and we write

∆ = Δ(m). A change ∆ is feasible wrt. society w if w + ∆ ≥ 0, i.e., if applying the change ∆ to w
results in a society (i.e., as long as there are enough voters from each type to move to other types).

A useful notion is the move costs vector, which is a vector c = (𝑐1,1, . . . , 𝑐𝜏,𝜏) in (N ∪ {+∞})𝜏
2

satisfying the triangle inequality, i.e., 𝑐𝑖,𝑘 ≤ 𝑐𝑖, 𝑗 + 𝑐 𝑗,𝑘 for all distinct 𝑖, 𝑗, 𝑘 .

Remark. We will mainly focus on moves that correspond to swap bribery actions. However, the

actions of bribery, manipulation, and control are all expressible as moves in societies. E.g., one

may create, for each voter type 𝑡 ∈ [𝜏], an “inactive” variant 𝑡 ′, and moving a voter from 𝑡 to 𝑡 ′

corresponds to deleting this voter while moving a voter from 𝑡 ′ to 𝑡 corresponds to adding it –

which are the actions considered in constructive control by adding/deleting voters. Hence, we

encourage the reader to keep in mind that whenever we talk about swaps and bribery, many other

types of actions may be substituted or added in that place.

Integer Programming Notes / Winter 22/23 27

𝑎 ≻ 𝑏 ≻ 𝑐

type 1; 𝑤 (1) = 21

𝑏 ≻ 𝑎 ≻ 𝑐

type 2; 𝑤 (2) = 10

𝑏 ≻ 𝑐 ≻ 𝑎

type 3; 𝑤 (3) = 10

𝑐 ≻ 𝑏 ≻ 𝑎

type 4; 𝑤 (4) = 21

𝑐 ≻ 𝑎 ≻ 𝑏

type 5; 𝑤 (5) = 42

𝑎 ≻ 𝑐 ≻ 𝑏

type 6; 𝑤 (6) = 42

Fig. 3. A society graph with three candidates and six types (corresponding to the six possible preference
orders on those three candidates). In this graph there are, e.g., 42 voters of type 6, each with preference order
𝑎 ≻ 𝑐 ≻ 𝑏; this graph corresponds to a society w = [21, 10, 10, 21, 42, 42].

6.5 Society Graphs
As we are interested in diffusion processes operating on the voter types, we associate a given

election with a vertex-weighted graph 𝐺 = (𝑉 ,w, 𝐸), termed the society graph. The society graph

contains 𝜏 vertices, where 𝜏 is the number of types in the election (specifically, 𝑉 = {𝑣1, . . . , 𝑣𝜏 },
where vertex 𝑣 𝑗 corresponds to voter type 𝑗 , and its weight𝑤 𝑗 is equal to the number of voters of

that type in the given election). There is an edge between vertices 𝑣 𝑗 and 𝑣 𝑗 ′ if the preference orders

corresponding to types 𝑗 and 𝑗 ′ differ by the ordering of a single pair of adjacent candidates (in

other words, if it is possible to transform one into the other with a single swap of two consecutive

candidates). We show an example of a society graph in Figure 3.
3

6.6 Diffusion of Preferences
Given a society graph (which encodes a given election), we consider two variants of the diffusion

process, namely asynchronous and synchronous. In the asynchronous variant, in each step of

the process some vertex 𝑣 of the society graph 𝐺 is picked and, then, the following occurs (we

do not specify which vertex is selected and, as we will see in Example 48 below, different orders

of selecting the vertices may lead to different outcomes of the process). We consider the closed

neighborhood 𝑁 [𝑣] of 𝑣 in 𝐺 (the closed neighborhood of a vertex is the set containing the vertex

and its neighbors) and check whether there is a neighbor 𝑥 of 𝑣 for which 𝑤𝑥 > 1/2 ∑𝑢∈𝑁 [𝑣] 𝑤𝑢 ;
that is, a neighbor whose weight exceeds the sum of the weights of all other vertices in the closed

neighborhood of 𝑣 . If such a neighbor 𝑥 exists, then we add the current weight𝑤𝑣 of 𝑣 to that of 𝑥

and change the weight 𝑤𝑣 to be 0. Intuitively, the voters of type represented at 𝑣 look at all the

voters with similar or identical preferences and if there is a majority support among these voters

for some preference order, then they switch to it. In the synchronous variant we proceed in the

same way, but simultanously for all vertices. The diffusion process halts whenever it stabilizes (i.e.,

whenever there is no change between an iteration and its successive one).

Example 48. Consider the society graph depicted in Figure 3 and asynchronous diffusion. Assume

that we first choose type 3. As type 3 has as neighbors types 2 and 4, together there are 41 voters of

these types, and 21 of them have preference order 𝑐 ≻ 𝑏 ≻ 𝑎. So, the 10 voters with type 3 move to

have type 4. If we then select type 4, type 6, and then type 2, then the diffusion converges with 115

voters of type 5 (with preference order 𝑐 ≻ 𝑎 ≻ 𝑏) and 31 voters of type 1 (with preference order

𝑎 ≻ 𝑏 ≻ 𝑐); thus, Plurality selects 𝑐 . However, if we select first type 2, then 1, then 5, and then 3,

then we reach convergence with 115 voters of type 6 (with preference order 𝑎 ≻ 𝑐 ≻ 𝑏) and 31

3
Graphs of this form are quite popular in the study of permutations. Later we will also consider other graphs.

28 M. Koutecký

voters of type 5 (with preference order 𝑐 ≻ 𝑏 ≻ 𝑎); thus, Plurality selects 𝑎. This shows that the

asynchronous diffusion process can lead to different outcomes, depending on the order in which

vertices are considered.

Let us now consider the same society graph and synchronous diffusion. After the first round,

we have 10 voters of type 1 (voters of type 2 moved to have type 1, whereas original type 1 voters

moved to have type 6), no voters of types 2 and 3, 10 voters of type 4, 63 voters of type 5, and 63

voters of type 6. After the next round there are 73 voters of type 5 and 73 voters of type 6. No further

changes are possible and the process converges; Plurality selects 𝑎 and 𝑐 as two tied winners.

6.7 Bribery in Society Graphs
Besides issues related to the diffusion of preferences, we are mainly interested in understanding the

possibility of manipulating election outcomes. Thus we assume that there is an external briber who

has some budget and, using this budget, can affect the original preference orders of some voters

(i.e., the preference orders they have prior to the diffusion). Specifically, in a single bribery action

the briber chooses a single voter and, at unit cost, shifts the briber’s preferred candidate 𝑝 up by

one position in this voter’s preference order (in effect, changing this voter’s type; see the work of

Elkind et al. [5, 6] and Bredereck et al. [1] for a detailed discussion of shift bribery and its various

cost models). The briber performs as many bribery actions as he wants, up to the budget limit, and

then the diffusion process takes place. The goal of the briber is to have his preferred candidate 𝑐★

win the resulting election (under a given, predetermined voting rule). Formally, we are interested

in the following general problem.

R-Bribery in society graphs (R-BSG)
Input: A society graph 𝐺 (given directly as a graph), a preferred candidate 𝑐★, and

a budget 𝑏.

Question: Are there at most 𝑏 (unit-cost, shift-) bribery actions, such that after

performing them on𝐺 and then running the diffusion process, 𝑐★ is an R-winner of
the resulting election?

Corresponding to the synchronous and asynchronous diffusion processes, we consider both

sync-R-BSG and async-R-BSG problems. For the asynchronous diffusion, we further consider the

optimistic and pessimistic variants of the problem. In the former, we ask whether the briber’s

preferred candidate wins for some order of the diffusion steps. In the latter, we require that 𝑝 wins

for every order of diffusion steps that leads to convergence.

Remark. The input to R-BSG is a labeled graph with weighted vertices, a preferred candidate 𝑐★,

and a budget 𝑏. Thus the size of the input encoding is linear in the number of voter types and only

logarithmic in the number of voters.

7 PA IS FPT
Let𝑚,𝑛 be integers. We wish to develop efficient algorithms that find optimal strategies for agents

that are manipulating a given election. Our approach is to write a formula in Presburger arithmetic

(here we shorten to PA; this is not to be confused with Peano arithmetic) with a vector m of free

variables such that the satisfying assignments are bribery actions corresponding to a first move in

a winning strategy. Here we first provide a brief introduction to PA, and later show that optimizing

over the satisfying assignments of a PA formula can be done efficiently if some of its parameters

are bounded, as will be the case for the formulas modeling winning strategies.

PA is a useful logic to reason about numbers. Intuitively, PA can be viewed as Integer Linear

Programming (ILP) enriched with logical connectives and quantifiers. For two formulas Φ and Ψ,
we denote their equivalence by Φ � Ψ.

Integer Programming Notes / Winter 22/23 29

Definition 49 (Extended Presburger Arithmetic (PA)). An atom (or atomic formula) is a linear

inequality ax ≤ 𝑏 or a congruence ax ≡ 𝑏 mod 𝑝 , with a ∈ Z𝑛 and 𝑏, 𝑝 ∈ Z. We call t ≡ ax + 𝑏
for some a and 𝑏 a term. A formula is obtained by taking Boolean combinations of atoms using

the standard logical connectives (∧,∨, =⇒ ,¬, etc.) and by existential and general quantifiers ∃,∀,
respectively. Denote by PA the set of all PA formulas. A literal is an atom or its negation. A variable

is bound in a formula 𝜑 if it appears in a quantifier, and it is free otherwise. If x is a vector of the

free variables of a formula 𝜑 , we write 𝜑 (x).

Remark. The term “extended” in the definition above refers to the congruence atoms that are

not present in the original language as defined by Presburger [?]; however, it is typical to speak

of PA as this extended language because it allows for quantifier elimination, unlike PA without

congruence atoms. For detailed definitions see Klaedtke [?].

We provide some further useful notation below. For 𝜑 ∈ PA we define T (𝜑) to be the set of all

atoms of 𝜑 of the form ax ≤ 𝑏, D(𝜑) to be the set of all atoms of the form ax ≡ 𝑏 mod 𝑝 , L(𝜑) to
be the number of symbols of 𝜑 (i.e., the number of atoms, logical connectives, and quantifiers),

4
the

maximum coefficient 𝛼 (𝜑) to be the maximum ∥a∥∞ and 𝑝 contained in any of its atoms, and the

maximum constant 𝛽 (𝜑) to be the largest right hand side 𝑏 in any of its atoms.

In this section, we aim at solving the following problem.

Presburger arithmetic minimization

Input: A PA formula 𝜑 (x) with 𝑑 free variables, and a function 𝑓 : R𝑑 → R.
Task: Find an assignment x ∈ Z𝑑 satisfying 𝜑 (x) and minimizing 𝑓 (x) (among satisfying

assignments), or reports unsatisfiability.

The main algorithmic result regarding Presburger arithmetic we prove here is the following.

Theorem 50. Presburger arithmetic minimization is fixed-parameter tractable parameterized

by L(𝜑) + 𝛼 (𝜑) for any convex function 𝑓 .

Proof. Assume that 𝜑 (y) ≡ 𝑄1𝑥1𝑄2𝑥2 . . . 𝑄𝑘−1𝑥𝑘−1𝑄𝑘𝑥𝑘𝜁 (x, y), with 𝑄1, . . . , 𝑄𝑘 ∈ {∃,∀} and
𝜁 (x, y) containing no quantifiers. Here, y is the vector of free variables of 𝜑 . The proof proceeds by

quantifier elimination: if we show that the innermost quantifier (∃𝑥𝑘 in our example) can be elimi-

nated, i.e., if we can construct an equivalent formula 𝜑 ′ (y) ≡ 𝑄1𝑥1 . . . 𝑄𝑘−1𝑥𝑘−1𝜁
′ (𝑥1, . . . , 𝑥𝑘−1, y),

then repeatedly applying this procedure reduces 𝜑 down to a formula with no quantifiers and only

containing variables y (but no variables x). Optimizing over the satisfying assignments of such

a formula then (with some more work) reduces to optimization over linear constraints in small

dimension. Already the original proof of Presburger that PA is decidable worked by quantifier

elimination. We shall now describe an algorithm of Cooper, which achieves better complexity.

Let us stress that our goal is not to prove the correctness of the algorithm, only to describe it in

sufficient detail so as to analyze its complexity, and still convey the main underlying intuition; for

correctness, we refer the reader to existing textbooks [?].

Consider a formula 𝜑 (𝑥𝑘) ≡ ∃𝑥𝑘𝜁 (𝑥𝑘), where 𝜁 (𝑥𝑘) is quantifier-free. Here, 𝜑 stands for the

suffix of the whole formula to be decided; we sometimes disregard the prefix 𝑄1𝑥1 · · ·𝑄𝑘−1𝑥𝑘−1

and the free variables y for brevity. Note that if the last quantifier was ∀, we negate the formula,

obtain ∃ as the last quantifier, and in the end negate the (eventually quantifier-free) formula again.

The algorithm proceeds in three steps. First, we put 𝜑 (𝑥𝑘) into negation normal form (pushing all

negations inward as much as possible) using De Morgan’s rules, yielding an equivalent formula

4
Note that this definition is different than the standard definition of the length of a formula, which uses unary encoding of

numbers.

30 M. Koutecký

𝜑1 (𝑥𝑘). Second, we normalize 𝜑1 (𝑥𝑘) so that the coefficients of 𝑥𝑘 are all 1 or −1, yielding 𝜑2 (𝑥𝑘).
This is done as follows. Let 𝐴 be the set of coefficients of 𝑥𝑘 in 𝜑1 (𝑥𝑘), and let 𝑀 = lcm(𝐴),
where lcm is the least common multiple and hence 𝑀 ≤ (max𝑎∈𝐴 𝑎) |𝐴 | . Replace every atom

a(x, y) ≤ 𝑏 in T (𝜑1) with (𝑀/𝑎𝑘) · a(x, y) ≤ (𝑀/𝑎𝑘)𝑏 (recall 𝑎𝑘 is the coefficient of 𝑥𝑘 in ax),
replace every atom a(x, y) ≡ 𝑏 mod 𝑝 in D(𝜑1) with (𝑀/𝑎𝑘)a(x, y) ≡ (𝑀/𝑎𝑘)𝑏 mod (𝑀/𝑎𝑘)𝑝
and call 𝜑2 (𝑥𝑘) the resulting formula. Now we perform the substitution 𝑥 ′

𝑘
= 𝑀𝑥𝑘 , hence let

𝜑3 (𝑥 ′𝑘) ≡ (𝜑2 (𝑀𝑥𝑘) ∧ 𝑥 ′𝑘 ≡ 0 mod 𝑀). Now, all coefficients of 𝑥 ′
𝑘
in 𝜑3 (𝑥 ′𝑘) are 1 or −1.

The third step is the most involved. Denote by x̄ = (𝑥1, . . . , 𝑥𝑘−1). Notice that all literals of

𝜑3 (𝑥 ′𝑘) are (perhaps after simple rearranging) of one of the following types, where t1, t2, t3 are terms

over the variables x̄:
𝑥 ′
𝑘
≤ t1,a) t2 ≤ 𝑥 ′𝑘 ,b)

𝑥 ′
𝑘
= t3 mod 𝑝 ,c) ¬(𝑥 ′

𝑘
= t3 mod 𝑝).d)

We distinguish two cases. Either 𝜑3 (𝑥 ′𝑘) has arbitrarily small satisfying assignments (i.e., for

any 𝑡 ∈ Z, there exists a satisfying assignment to 𝑥 ′
𝑘
smaller than 𝑡). Then, for a sufficiently small

satisfying assignment, literals of type a) are satisfied and can be replaced by ⊤, and literals of

type b) are falsified and can be replaced by ⊥. Call 𝜑−∞ (𝑥 ′𝑘) a formula obtained from 𝜑3 (𝑥 ′𝑘) by the

aforementioned replacements. Let𝑀 ′ be the least common multiple of all the moduli 𝑝 in literals

of types c) and d), and let 𝜑41 ≡
∨𝑀 ′
𝑗=1
𝜑−∞ (𝑗). Then 𝜑41 is satisfiable iff 𝜑 (𝑥𝑘) has arbitrarily small

satisfying assignments.

Now we construct a formula 𝜑42 which is satisfied in the converse case when 𝜑 (𝑥𝑘) has a least
satisfying assignment. For such an assignment some type-b) literal is satisfied and for smaller assign-

ments it is not. We let 𝐵 = {t2 | t2 ≤ 𝑥 ′𝑘 is a type-b) literal} and define 𝜑42 ≡
∨𝑀 ′
𝑗=1

∨
t2∈𝐵 𝜑3 (t2 + 𝑗)

(note here that 𝜑3 (t2 + 𝑗) is 𝜑3 with 𝑥
′
𝑘
substituted by t2 + 𝑗). Then 𝜑4 ≡ 𝜑41 ∨ 𝜑42 and it does not

contain any occurrence of 𝑥𝑘 , finishing the elimination.

Let us now bound the length, maximum coefficient, and maximum constant of the formula

resulting after eliminating all quantifiers. For this, it suffices to bound the blow-up caused by one

quantifier elimination. Step one does not consider the coefficients or constants in any way and hence

L(𝜑1) is bounded by a function of L(𝜑), 𝛼 (𝜑1) = 𝛼 (𝜑), and 𝛽 (𝜑1) = 𝛽 (𝜑). Step two increases the

coefficients and constants by a number only depending on the previously largest coefficient and the

number of literals and adds two symbols, specifically,𝛼 (𝜑3) ≤ 𝛼 (𝜑1)L(𝜑1)
, 𝛽 (𝜑3) ≤ 𝛽 (𝜑1)·𝛼 (𝜑1)L(𝜑1)

,

and L(𝜑3) = L(𝜑1) + 2. In step three again the length, largest coefficient and largest constant only

grows by a factor of the initial length and largest coefficient, specifically, L(𝜑4) ≤ 𝛼 (𝜑3)L(𝜑3) ·L(𝜑3)2,
𝛼 (𝜑4) ≤ 𝛼 (𝜑3)L(𝜑3) · 𝛼 (𝜑3) = 𝛼 (𝜑3)L(𝜑3)+1

, and 𝛽 (𝜑4) ≤ 𝛽 (𝜑3) · 𝛼 (𝜑3)L(𝜑3)
. Applying the bounds

derived above inductively, we get the following intermediate claim:

Lemma 51. There exists a computable function𝑔 such that given a formula𝜑 (y) ∈ PA, an equivalent
quantifier-free formula𝜓 (y) can be obtained in time O(𝑔(L(𝜑), 𝛼 (𝜑))) and it satisfies:

• L(𝜓), 𝛼 (𝜓) ≤ 𝑔(L(𝜑), 𝛼 (𝜑)),
• 𝛽 (𝜓) ≤ 𝑔(L(𝜑), 𝛼 (𝜑)) · 𝛽 (𝜑).

Now, we come to the second step, where we wish to optimize over the satisfying assignments

of 𝜓 (y). We transform 𝜓 to disjunctive normal form (so that it is a disjunction of conjunctions

of atoms), which may increase its length exponentially, but that is still bounded by a function of

the parameters. Let us now assume that 𝜓 ≡ 𝜓1 ∨𝜓2 · · ·𝜓𝐾 for some 𝐾 ∈ N, where each 𝜓𝑖 is a
conjunction of literals. Clearly, an assignment y minimizing 𝑓 (y) over the satisfying assignments

of 𝜓 satisfies some conjunction 𝜓𝑖 , so we may instead minimize separately over the satisfying

assignments for each𝜓𝑖 , 𝑖 ∈ [𝐾]. This can be done by algorithms for convex integer minimization

Integer Programming Notes / Winter 22/23 31

whenever𝜓𝑖 is a conjunction of linear atoms [3, 11], so our next task is to linearize the congruence

atoms.

This is easy for positive literals: say we have ay = 𝑏 mod 𝑝 ; then we introduce a new variable 𝑧,

and add a linear constraint 𝑝𝑧 = ay−𝑏, which is satisfied iff ay−𝑏 is divisible by 𝑝 . For the negative
literals, this is a little bit trickier: say we have ay ≠ 𝑏 mod 𝑝 . This is equivalent to saying that ay
mod 𝑝 is between 𝑏 + 1 and 𝑏 + 𝑝 − 1. We introduce two variables 𝑧, 𝑧′ and add the following three

linear constraints: 𝑝𝑧 = ay− 𝑧′ and 𝑏 + 1 ≤ 𝑧′ < 𝑏 + 𝑝 . Since we have introduced a constant number

of new variables and constraints for each congruence atom, the system resulting from𝜓𝑖 is still of

length bounded by a function of the parameters, and evaluating 𝑓 over its integer assignments can

be done in fixed-parameter tractable time (specifically, in time 𝛿O(𝛿)poly log(𝛼 (𝜓𝑖), 𝛽 (𝜓𝑖)) where 𝛿
is the number of variables, which is at most 3𝑑 , the dimension of y, i.e., the number of free variables

of 𝜑) [3, 11]. This concludes the proof. □

8 ALGORITHMS: PUTTING IT TOGETHER
Putting together the algorithms we know for 𝑛-fold IPs and Presburger Arithmetic, we are able to

solve many of the problems outlined above (bribery, bribery with opinion diffusion, etc.)

8.1 Borda-Bribery is FPT
This is just as sketch of the algorithm Say there are 𝜏 ′ types of voters on input, and we consider

bribery/control actions which can only create 𝑇 new types for each input type. This captures all

the actions defined above; for example, swaps can only produce𝑚! − 1 new types for one input

type; control (the activation/deactivation of a voter) only creates 1 more type for each input type,

etc. Thus, we know that there are at most 𝜏 ≤ (𝑇 + 1) · 𝜏 ′ “potential types”, those types which could

appear because of the bribery/control etc. Also assume that we can construct a moves cost vector c
from the given bribery/control costs, so that 𝑐𝑖 𝑗 is the cost of moving a voter of type 𝑖 to type 𝑗 .

Consider for example Condorcet’s voting rule. Then we construct an 𝑛-fold IP as follows. The

variables will represent the move vector of the bribery:𝑚𝑖 𝑗 is the number of voters of type 𝑖 which

are to be bribed to become of type 𝑗 . Thus, w′ = w +∆(m) is the new society, and ensuring that 𝑐★

is the Condorcet winner amounts to the following set of constraints:∑︁
𝑖:𝑐★>𝑖𝑐

′

𝑤 ′𝑖 >
∑︁

𝑖:𝑐′>𝑖𝑐
★

𝑤 ′𝑖 . ∀𝑐 ∈ 𝐶 \ {𝑐★}

Notice that𝑤 ′𝑖 above is just syntactic sugar for𝑤𝑖 − (
∑
𝑗𝑚𝑖 𝑗) + (

∑
𝑖𝑚𝑖 𝑗), where𝑤𝑖 is a constant, so

the above is a set of |𝐶 | − 1 constraints, each only involving the m variables. We also need another

set of constraints: ∑︁
𝑗∈[𝜏]

𝑚𝑖 𝑗 = 𝑤𝑖 ∀𝑖 ∈ [𝜏 ′]

which ensure that m is indeed a valid move, i.e. w + ∆(m) ≥ 0.
Now observe that the first type of constraints may involve all the variables in an unrestricted way,

but there are only |𝐶 | − 1 of those constraints. On the other hand, there are many (𝜏 ′) constraints
of the second type, but they don’t “overlap” in the variables they involve – only the 𝑖-th constraint

involves variables𝑚𝑖•. Thus, the ILP above is an 𝑛-fold IP with parameters 𝑟 = |𝐶 | − 1, 𝑠 = 1, 𝑡 = 𝜏 ,

and with 𝑛 = 𝜏 ′ many blocks, thus applying our FPT algorithms for it will give an FPT algorithm

for Bribery parameterized by the number of candidates |𝐶 |.

32 M. Koutecký

8.2 Other Voting Rules
What if we wanted to consider other voting rules? For many of them, one could construct the

corresponding constraints by hand. However, for some more involved voting rules, such as STV, or

even worse, Young and Dodgson, this is not at all obvious. A neat trick is the following. Write a PA

formula 𝜑 (w) which is true iff w is a society in which 𝑐★ wins under some voting rule R (this could

be STV, Dodgson, Young, etc.) and so that the length of 𝜑 and its largest coefficient are bounded by

a parameter. We have proven that there exists an equivalent DNF formula𝜓 (w) whose each clause

corresponds to an ILP with some congruence predicates, which we can turn into a “pure” ILP (no

congruence predicates) with the use of some extra variables. Because the length of𝜓 is bounded by

a function of the length of 𝜑 and its largest coefficient, the number of constraints corresponding to

each clause of 𝜓 is small. Thus, if we use them as winning constraints in the 𝑛-fold IP from the

previous section, we can still solve the resulting IP quickly. Now do this separately for each clause

of𝜓 , compute the optimum of the resulting 𝑛-fold, and return the minimum of these.

8.3 Diffusion Process
Also using our algorithm for PA, we can solve the R-BSG. One just needs to notice that the whole

diffusion process can be expressed as a short PA formula.

REFERENCES
[1] R. Bredereck, J. Chen, P. Faliszewski, A. Nichterlein, and R. Niedermeier. 2016. Prices matter for the parameterized

complexity of shift bribery. Information and Computation 251 (2016), 140–164.

[2] Jana Cslovjecsek, Friedrich Eisenbrand, Michal Pilipczuk, Moritz Venzin, and Robert Weismantel. 2021. Efficient

Sequential and Parallel Algorithms for Multistage Stochastic Integer Programming Using Proximity. In 29th Annual

European Symposium on Algorithms, ESA 2021, September 6-8, 2021, Lisbon, Portugal (Virtual Conference) (LIPIcs), Petra

Mutzel, Rasmus Pagh, and Grzegorz Herman (Eds.), Vol. 204. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

33:1–33:14. https://doi.org/10.4230/LIPIcs.ESA.2021.33

[3] Daniel Dadush, Chris Peikert, and Santosh Vempala. 2011. Enumerative Lattice Algorithms in any Norm

Via M-ellipsoid Coverings.. In FOCS, Rafail Ostrovsky (Ed.). IEEE, 580–589. http://dblp.uni-trier.de/db/conf/

focs/focs2011.html#DadushPV11;http://dx.doi.org/10.1109/FOCS.2011.31;http://www.bibsonomy.org/bibtex/

2eb00db06f2ab0db87494018ddc765f1e/dblp

[4] Jesús A. De Loera, Raymond Hemmecke, and Matthias Köppe. 2013. Algebraic and Geometric Ideas in the Theory of

Discrete Optimization. MOS-SIAM Series on Optimization, Vol. 14. SIAM.

[5] E. Elkind and P. Faliszewski. 2010. Approximation Algorithms for Campaign Management. In Proceedings of WINE ’10.

473–482.

[6] E. Elkind, P. Faliszewski, and A. Slinko. 2009. Swap Bribery. In Proceedings of SAGT ’09. 299–310.

[7] Peter C. Fishburn. 1977. Condorcet social choice functions. SIAM J. Appl. Math. 33, 3 (1977), 469–489.

[8] András Frank and Éva Tardos. 1987. An application of simultaneous Diophantine approximation in combinatorial

optimization. Combinatorica 7, 1 (1987), 49–65.

[9] Paul Gordan. 1873. Ueber die Auflösung linearer Gleichungen mit reellen Coefficienten. Math. Ann. 6, 1 (1873), 23–28.

[10] Jack E. Graver. 1975. On the foundations of linear and integer linear programming I. Math. Program 9, 1 (1975),

207–226.

[11] Martin Grötschel, László Lovász, and Alexander Schrijver. 1993. Geometric algorithms and combinatorial optimization

(second ed.). Algorithms and Combinatorics, Vol. 2. Springer-Verlag, Berlin. xii+362 pages.

[12] Raymond Hemmecke, Matthias Köppe, and Robert Weismantel. 2014. Graver basis and proximity techniques for

block-structured separable convex integer minimization problems. Mathematical Programming 145, 1-2, Ser. A (2014),

1–18.

[13] Dorit S. Hochbaum and J. George Shanthikumar. 1990. Convex separable optimization is not much harder than linear

optimization. J. ACM 37, 4 (1990), 843–862.

[14] Kim-Manuel Klein. 2019. About the Complexity of Two-Stage Stochastic IPs. CoRR abs/1901.01135 (2019).

arXiv:1901.01135 http://arxiv.org/abs/1901.01135

[15] Kim-Manuel Klein and Janina Reuter. 2022. Collapsing the Tower - On the Complexity of Multistage Stochastic IPs. In

Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA,

USA, January 9 - 12, 2022, Joseph (Seffi) Naor and Niv Buchbinder (Eds.). SIAM, 348–358. https://doi.org/10.1137/1.

https://doi.org/10.4230/LIPIcs.ESA.2021.33
http://dblp.uni-trier.de/db/conf/focs/focs2011.html#DadushPV11; http://dx.doi.org/10.1109/FOCS.2011.31; http://www.bibsonomy.org/bibtex/2eb00db06f2ab0db87494018ddc765f1e/dblp
http://dblp.uni-trier.de/db/conf/focs/focs2011.html#DadushPV11; http://dx.doi.org/10.1109/FOCS.2011.31; http://www.bibsonomy.org/bibtex/2eb00db06f2ab0db87494018ddc765f1e/dblp
http://dblp.uni-trier.de/db/conf/focs/focs2011.html#DadushPV11; http://dx.doi.org/10.1109/FOCS.2011.31; http://www.bibsonomy.org/bibtex/2eb00db06f2ab0db87494018ddc765f1e/dblp
http://arxiv.org/abs/1901.01135
http://arxiv.org/abs/1901.01135
https://doi.org/10.1137/1.9781611977073.17
https://doi.org/10.1137/1.9781611977073.17

Integer Programming Notes / Winter 22/23 33

9781611977073.17

[16] Dusan Knop, Michal Pilipczuk, and Marcin Wrochna. 2018. Tight complexity lower bounds for integer linear

programming with few constraints. CoRR abs/1811.01296 (2018). arXiv:1811.01296 http://arxiv.org/abs/1811.01296

[17] Hendrik W. Lenstra, Jr. 1983. Integer programming with a fixed number of variables. Mathematics of Operations

Research 8, 4 (1983), 538–548.

[18] Shmuel Onn. 2010. Nonlinear discrete optimization. Zurich Lectures in Advanced Mathematics, European Mathematical

Society (2010). http://ie.technion.ac.il/∼onn/Book/NDO.pdf.
[19] Felix Reidl, Peter Rossmanith, Fernando Sánchez Villaamil, and Somnath Sikdar. 2014. A Faster Parameterized

Algorithm for Treedepth. In Proceedings Part I of the 41st International Colloquium on Automata, Languages, and

Programming, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014 (Lecture Notes in Computer Science), Javier Esparza,

Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias (Eds.), Vol. 8572. Springer, 931–942.

[20] Sergey Sevast’janov and Wojciech Banaszczyk. 1997. To the Steinitz lemma in coordinate form. Discrete Math. 169, 1-3

(1997), 145–152.

[21] E. Steinitz. 1916. Bedingt konvergente Reihen und konvexe Systeme. J. Reine Angew. Math. 146 (1916), 1–52.

[22] Arne Storjohann and George Labahn. 1996. Asymptotically Fast Computation of Hermite Normal Forms of Integer

Matrices. In Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation, ISSAC ’96,

Zurich, Switzerland, July 24-26, 1996, Erwin Engeler, B. F. Caviness, and Yagati N. Lakshman (Eds.). ACM, 259–266.

http://dl.acm.org/citation.cfm?id=236869

[23] Éva Tardos. 1986. A strongly polynomial algorithm to solve combinatorial linear programs. Operations Research 34, 2

(1986), 250–256.

[24] William S. Zwicker. 2016. Introduction to the theory of voting. In Handbook of Computational Social Choice, Felix

Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia (Eds.). Cambridge University Press, 23–56.

https://doi.org/10.1137/1.9781611977073.17
https://doi.org/10.1137/1.9781611977073.17
https://doi.org/10.1137/1.9781611977073.17
http://arxiv.org/abs/1811.01296
http://arxiv.org/abs/1811.01296
http://dl.acm.org/citation.cfm?id=236869

	1 Integer Programming in General
	2 Fixed Dimension
	3 Variable Dimension
	3.1 Introduction to Iterative Augmentation
	3.2 Bounding The Norm
	3.3 A Dynamic Programming Algorithm
	3.4 The Graphs of A and Treedepth
	3.5 Bounding The Norms
	3.6 Solving Augmentation IP
	3.7 The Proof

	4 Strongly Polynomial Algorithms
	5 Proximity, Sensitivity, Scaling
	5.1 Scaling and Proximity
	5.2 Scaling algorithm.
	5.3 Solving (P) by Scaling
	5.4 Fast Primal Algorithm

	6 Intro to Computational Social Choice
	6.1 Voting, Elections, Bribing
	6.2 Actions for Manipulation
	6.3 Voting rules
	6.4 Voter Types, Societies, and Moves
	6.5 Society Graphs
	6.6 Diffusion of Preferences
	6.7 Bribery in Society Graphs

	7 PA is FPT
	8 Algorithms: Putting It Together
	8.1 Borda-Bribery is FPT
	8.2 Other Voting Rules

	References

