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1 INTEGER PROGRAMMING IN GENERAL
Our focus is on the integer (linear) programming problem in standard form

min {𝑓 (x) | 𝐴x = b, l ≤ x ≤ u, x ∈ Z𝑛} , and (IP)

min {wx | 𝐴x = b, l ≤ x ≤ u, x ∈ Z𝑛} , (ILP)

with 𝐴 an integer 𝑚 × 𝑛 matrix, 𝑓 : R𝑛 → R a separable convex function, b ∈ Z𝑚 , and l, u ∈
(Z ∪ {±∞})𝑛 . (IP) is well-known to be strongly NP-hard already in the special case (ILP) when

𝑓 (x) = wx is a linear objective function for some vector w ∈ Z𝑛
. (E.g. it is easy to encode Vertex

Cover as ILP.) In this course, we will cover some important, broad, natural, and useful conditions

under which (IP) can be solved in polynomial time.

Notation
We write vectors in boldface (e.g., x, y) and their entries in normal font (e.g., the 𝑖-th entry of x
is 𝑥𝑖 ). For positive integers𝑚 ≤ 𝑛 we set [𝑚,𝑛] := {𝑚, . . . , 𝑛} and [𝑛] := [1, 𝑛], and we extend this

notation for vectors: for l, u ∈ Z𝑛
with l ≤ u, [l, u] := {x ∈ Z𝑛 | l ≤ x ≤ u}. If 𝐴 is a matrix, 𝐴𝑖, 𝑗

denotes the 𝑗-th coordinate of the 𝑖-th row, 𝐴𝑖,• denotes the 𝑖-th row and 𝐴•, 𝑗 denotes the 𝑗-th
column. We use log := log

2
. For an integer 𝑎 ∈ Z, we denote by ⟨𝑎⟩ := 1 + ⌈log( |𝑎 | + 1)⌉ the binary

encoding length of 𝑎; we extend this notation to vectors, matrices and tuples of these objects. For

example, ⟨𝐴, b⟩ = ⟨𝐴⟩ + ⟨b⟩, and ⟨𝐴⟩ = ∑
𝑖, 𝑗 ⟨𝐴𝑖, 𝑗 ⟩.

2 FIXED DIMENSION
(IP) can be solved in time 𝑔(𝑛)𝑝𝑜𝑙𝑦 (𝑛, 𝐿) for some function 𝑔, and this goes back to the work of

Lenstra [5]. The best current bound is 𝑔(𝑛) = O(log𝑛)𝑛 and is due to Rothvoss and Reis [7]. The

algorithm even applies to the case where 𝑓 is general convex (non-separable), and where x belongs

to some convex body 𝐾 ⊆ R𝑛
.

We will sketch the main ideas of the proof, but don’t pretend to give all details. Define the width
of 𝐾 along a direction d ∈ Z𝑛

to be

𝑤d (𝐾) = max{dx | x ∈ 𝐾} − min{dx | x ∈ 𝐾} .

If the max or min does not exist, we define the width to be infinity. The width of 𝐾 is defined as the

smallest width over all non-zero directions; notice that we are taking the directions over all integer

vectors in order to avoid silly issues like being able to get very small width by taking very small

(non-integral) d:
𝑤 (𝐾) = min

d∈Z𝑑\{0}
𝑤d (𝐾) .

A d which attains the minimum above is called a flat direction of 𝐾 . The algorithm relies on the

following deep and famous result:

Proposition 1 (Khinchine’s Flatness Theorem). Let 𝐾 ⊆ R𝑛 be a convex body. Then either
𝐾 contains a lattice point (i.e., 𝐾 ∩ Z𝑛 ≠ ∅), or 𝑤 (𝐾) ≤ 𝜔 (𝑛) where 𝜔 (𝑛) is some constant only
depending on 𝑛.
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(It could be that 𝐾 is flat and contains an integer point, and this doesn’t bother us.)

We focus on solving feasibility, that is, deciding𝐾∩Z𝑛 ≠ ∅; optimization can be handled by doing

a binary search over the objective and then adding this objective bound into the set of constraints.

Specifically, if our guess on the objective is 𝑇 , we want to enforce a constraint 𝑓 (x) ≤ 𝑇 , and

because 𝑓 is convex, this is a convex constraint and thus 𝐾 ′ = 𝐾 ∩ {x | 𝑓 (x) ≤ 𝑇 } is a convex set
and we solve feasibility for 𝐾 ′

instead of optimization over 𝐾 .

The main idea of the algorithm is this. We compute a flat direction d of 𝐾 (which is not an easy

problem but is known to be doable so we treat it here as an oracle call). If we see that𝑤 (𝐾) > 𝜔 (𝑛),
we know that 𝐾 contains an integer point and we are done. Otherwise,𝑤 (𝐾) ≤ 𝜔 (𝑛). This means

we can branch into at most 𝜔 (𝑛) lower-dimensional slices of 𝐾 and solve the problem inductively

in each of them. Because the dimension drops by at least one in each branching, the branching tree

has at most 𝑛 levels, and because we branch into at most 𝜔 (𝑛) slices, the degree of the tree is at
most 𝜔 (𝑛), so altogether the tree has at most 𝜔 (𝑛)𝑛 nodes.

What does this branching look like in detail? If 𝐾 contains an integer point, then it must lie on

one of the hyperplanes

dx = 𝛿, where 𝛿 ∈ [min{dx | x ∈ 𝐾},max{dx | x ∈ 𝐾}] .

The rest of the work is that we need to transform the set 𝐾 ∩ {x | dx = 𝛿} which is less than

𝑛-dimensional but lives in 𝑛 dimensions into a set 𝐾 ′ ⊆ R𝑛−1
which is integer feasible iff 𝐾 is, and

then call the algorithm on 𝐾 ′
.

3 VARIABLE DIMENSION
Some more preliminaries are in order now.

For a function 𝑓 : Z𝑛 → Z and two vectors l, u ∈ Z𝑛
, we define 𝑓

[l,u]
gap

:= maxx,x′∈[l,u] |𝑓 (x)−𝑓 (x′) |;
if [l, u] is clear from the context we omit it and write just 𝑓gap. We assume that 𝑓 : R𝑛 → R is a

separable convex function, i.e., it can be written as 𝑓 (x) = ∑𝑛
𝑖=1

𝑓𝑖 (𝑥𝑖 ) where 𝑓𝑖 is a convex function
of one variable, for each 𝑖 ∈ [𝑛]. Moreover, we require that for each x ∈ Z𝑛

, 𝑓 (x) ∈ Z. We assume

𝑓 is given by a comparison oracle. We use 𝜔 to denote the smallest number such that matrix

multiplication of 𝑛 ×𝑛 matrices can be performed in time O(𝑛𝜔 ). We say that a system of equations

𝐴x = b is pure if the rows of 𝐴 are linearly independent. The next statement follows easily by

Gaussian elimination, hence we assume𝑚 ≤ 𝑛 throughout the paper.

Proposition 2 (Purification [4, Theorem 1.4.8]). Given 𝐴 ∈ Z𝑚×𝑛 and b ∈ Z𝑚 one can in time
O(min{𝑛,𝑚}𝑛𝑚) either declare 𝐴x = b infeasible, or output a pure equivalent subsystem 𝐴′x = b′.

The goal of this section is to prove the following theorem:

Theorem 3. There is a computable function 𝑔 such that (IP) can be solved in time

𝑔(∥𝐴∥∞,min{td𝑃 (𝐴), td𝐷 (𝐴)}) · 𝑛2
log ∥u − l, b∥∞ log

(
2𝑓gap

)
+ O(𝑛𝜔 ⟨𝐴⟩)

In Sections 3.1-?? we shall develop the necessary ingredients to prove this theorem. Then, we

will conclude in Section ?? by providing its proof which puts these ingredients together.

3.1 Introduction to Iterative Augmentation
Let us introduce Graver bases and discuss how they are used for optimization. We define a partial

order ⊑ on R𝑛
as follows: for x, y ∈ R𝑛

we write x ⊑ y and say that x is conformal to y if, for each

𝑖 ∈ [𝑛], 𝑥𝑖𝑦𝑖 ≥ 0 (that is, x and y lie in the same orthant) and |𝑥𝑖 | ≤ |𝑦𝑖 |. For a matrix 𝐴 ∈ Z𝑚×𝑛

we write kerZ (𝐴) = {x ∈ Z𝑛 | 𝐴x = 0}. It is well known that every subset of Z𝑛
has finitely many

⊑-minimal elements [2].
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Definition 4 (Graver basis [3]). The Graver basis of an integer𝑚 × 𝑛 matrix 𝐴 is the finite set

G(𝐴) ⊂ Z𝑛
of ⊑-minimal elements in kerZ (𝐴) \ {0}.

One important property of G(𝐴) is as follows:

Lemma 5 (Positive Sum Property [6, Lemma 3.4]). Let 𝐴 ∈ Z𝑚×𝑛 . For any x ∈ kerZ (𝐴), there
exists an 𝑛′ ≤ 2𝑛−1 and a decomposition x =

∑𝑛′
𝑗=1
𝜆 𝑗g𝑗 with 𝜆 𝑗 ∈ N and g𝑗 ∈ G(𝐴) for each 𝑗 ∈ [𝑛′],

and with g𝑗 ⊑ x, i.e., all g𝑗 belonging to the same orthant as x.

Proof. Let 𝐺 be a matrix whose columns are g ∈ G(𝐴) such that g ⊑ x. Consider the following
LP in variables y ∈ R |𝐺 |

:

max

∑︁
g
𝑦g

𝐺y = x
y ≥ 0

There is a basic optimal solution y∗ and from LP theory we know that, because there are 𝑛 equality

constraints and only non-negativity constraints besides that, | supp(y∗) | ≤ 𝑛. We will define the

coefficient vector 𝝀 in two phases. In the first phase, let 𝝀 = ⌊y∗⌋. Recall that {y∗} is the fractional
part of y∗. Observe that𝐺{y∗} is an integer vector, because it is𝐺y∗−𝐺 ⌊y∗⌋ which is a difference of

two integer vectors. Thus, {y∗} describes a decomposition of x̄ := x −𝐺 ⌊y∗⌋ ∈ KerZ (𝐴). Moreover,

{y∗} is a decomposition maximizing the ℓ1-norm, which is the objective of the above LP. (The fact

that {y∗} is a fractional decomposition of x̄ maximizing ℓ1-norm is easy to see by contradiction: if

there was a better decomposition y′ of x̄, one could use it to get a better decomposition y′+ ⌊y∗⌋ of x,
but y∗ was assumed to be maximum.) Finally, we have that ∥{y∗}∥1 < 𝑛 because it is a sum of at most

𝑛 numbers, each strictly smaller than 1. Now consider an optimal integer decomposition of x̄, i.e., a
non-negative vector ȳ ∈ Z𝑛

satisfying𝐺 ȳ = x̄. It cannot have a larger ℓ1-norm than {y∗} because
{y∗} is an optimum of the continuous relaxation, thus ∥ȳ∥1 ≤ ∥{y∗}∥1 < 𝑛, that is, ∥ȳ∥1 ≤ 𝑛 − 1.

This is the second phase: update 𝝀: = 𝝀 + ȳ. We have | supp(𝝀) | ≤ | supp(y∗) | + | supp(ȳ) | ≤
𝑛 + (𝑛 − 1) = 2𝑛 − 1. □

In fact, the Lemma holds with a better constant 2𝑛 − 2, and we will use this bound in the sequel,

although this has no asymptotic significance for us.

Proposition 6 (Positive Sum Property [6, Lemma 3.4]). For any x ∈ kerZ (𝐴), there exists an
𝑛′ ≤ 2𝑛 − 2 and a decomposition x =

∑𝑛′
𝑗=1
𝜆 𝑗g𝑗 with 𝜆 𝑗 ∈ N and g𝑗 ∈ G(𝐴) for each 𝑗 ∈ [𝑛′], and

with g𝑗 ⊑ x, i.e., all g𝑗 belonging to the same orthant as x.

We say that x ∈ Z𝑛
is feasible for (IP) if 𝐴x = b and l ≤ x ≤ u. Let x be a feasible solution for (IP).

We call g a feasible step if x + g is feasible for (IP). Further, call a feasible step g augmenting if

𝑓 (x + g) < 𝑓 (x). An important implication of Proposition 6 is that if any augmenting step exists,

then there exists one in G(𝐴) [1, Lemma 3.3.2].

An augmenting step g and a step length 𝜆 ∈ N form an x-feasible step pair with respect to x if

l ≤ x + 𝜆g ≤ u. An augmenting step h is a Graver-best step for x if 𝑓 (x + h) ≤ 𝑓 (x + 𝜆g) for all
x-feasible step pairs (g, 𝜆) ∈ G(𝐴) × N. A slight relaxation of a Graver-best step is a halfling: an

augmenting step h is a halfling for x if 𝑓 (x) − 𝑓 (x+ h) ≥ 1

2
(𝑓 (x) − 𝑓 (x+ 𝜆g)) for all x-feasible step

pairs (g, 𝜆) ∈ G(𝐴) × N. A halfling augmentation procedure for (IP) with a given feasible solution

x0 works as follows. Let 𝑖 := 0.

(1) If there is no halfling for x𝑖 , return it as optimal.

(2) If a halfling h𝑖 for x𝑖 exists, set x𝑖+1 := x𝑖 + h𝑖 , 𝑖 := 𝑖 + 1, and go to 1.
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We assume that the bounds l, u are finite.

Lemma 7 (Halfling convergence). Given a feasible solution x0 for (IP), the halfling augmentation
procedure finds an optimum of (IP) in at most 3𝑛 log (𝑓 (x0) − 𝑓 (x∗)) ≤ 3𝑛 log

(
𝑓
[l,u]

max

)
steps.

Before we prove the lemma we need a useful proposition about separable convex functions:

Proposition 8 (Separable convex superadditivity [1, Lemma 3.3.1]). Let 𝑓 (x) = ∑𝑛
𝑖=1

𝑓𝑖 (𝑥𝑖 )
be separable convex, let x ∈ R𝑛 , and let g

1
, . . . , g𝑘 ∈ R𝑛 be vectors that are pairwise conformal. Then

𝑓

(
x +

𝑘∑︁
𝑗=1

𝛼 𝑗g𝑗

)
− 𝑓 (x) ≥

𝑘∑︁
𝑗=1

𝛼 𝑗

(
𝑓 (x + g𝑗 ) − 𝑓 (x)

)
(1)

for arbitrary integers 𝛼1, . . . , 𝛼𝑘 ∈ N.

The essence of this proposition is that if multiple steps take us from x0 to x∗, then the sum of

their improvements considered individually with respect to x0 is at least the improvement when

we take them together, i.e., the difference 𝑓 (x) − 𝑓 (x∗). (This is tricky to read correctly because

“improvement” is a negative term, because we are minimizing.) An illustrative example is 𝑓 (𝑥) = 𝑥2
:

if we are at a point 𝑥 = 2, then moving by 1 closer to the origin improves the objective by 3 (decrease

from 4 to 1), but moving by another 1 only improves it by 1 (decrease from 1 to 0). So if we think of

the path from 2 to 0 as two steps by 1, when we consider the total of the progress each step would

achieve individually with respect to the initial point 2, we get 3 + 3 = 6, but taken together, the

steps only achieve the progress of 4. Essentially, the contribution of each step considered in the

sequence is at most the contribution of each step considered individually with respect to the initial

point.

Proof of Lemma 7. Let x∗ be an optimal solution of (IP). By Proposition 6 wemaywrite x∗−x0 =∑𝑛′
𝑗=1
𝜆 𝑗g𝑗 such that g𝑗 ⊑ x∗ − x0 for all 𝑗 ∈ [𝑛′], and 𝑛′ ≤ 2𝑛 − 2. We apply Proposition 8 to x0 and

the 𝑛′ vectors 𝜆 𝑗g𝑗 with 𝛼 𝑗 := 1, so by (1) we have

0 ≥ 𝑓 (x∗) − 𝑓 (x0) = 𝑓
(
x0 +

𝑛′∑︁
𝑗=1

𝜆 𝑗g𝑗

)
− 𝑓 (x0) ≥

𝑛′∑︁
𝑗=1

(
𝑓 (x0 + 𝜆 𝑗g𝑗 ) − 𝑓 (x0)

)
,

and multiplying by −1 gives 0 ≤ 𝑓 (x0) − 𝑓 (x∗) ≤ ∑𝑛′
𝑗=1

(𝑓 (x0) − 𝑓 (x0 + 𝜆 𝑗g𝑗 )). By an averaging

argument, there must exist an index ℓ ∈ [𝑛′] such that

𝑓 (x0) − 𝑓 (x0 + 𝜆ℓgℓ ) ≥
1

𝑛′
(𝑓 (x0) − 𝑓 (x∗)) ≥

1

𝑛′
𝑓gap . (2)

Consider a halfling h for x0: by definition, it satisfies 𝑓 (x0) − 𝑓 (x0 + h) ≥ 1

2
(𝑓 (x0) − 𝑓 (x0 + 𝜆𝑖g𝑖 )).

Say that the halfling augmentation procedure required 𝑠 iterations. For 𝑖 ∈ [𝑠 − 1] we have that

𝑓 (x𝑖 ) − 𝑓 (x∗) ≤
(
1 − 1

4𝑛 − 4

)
(𝑓 (x𝑖−1) − 𝑓 (x∗)) =

4𝑛 − 5

4𝑛 − 4

(𝑓 (x𝑖−1) − 𝑓 (x∗))

and, by repeated application of the above,

𝑓 (x𝑖 ) − 𝑓 (x∗) ≤
(

4𝑛 − 5

4𝑛 − 4

)𝑖
(𝑓 (x0) − 𝑓 (x∗)) .
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Since 𝑖 is not the last iteration, 𝑓 (x𝑖 ) − 𝑓 (x∗) ≥ 1 by the integrality of 𝑓 . Take 𝑡 := 4𝑛 − 4 and

compute

1 ≤
(
𝑡 − 1

𝑡

)𝑖
(𝑓 (x0) − 𝑓 (x∗)) / ln(·)

0 ≤ 𝑖 ln

(
𝑡 − 1

𝑡

)
+ ln (𝑓 (x0) − 𝑓 (x∗)) / −𝑖 ln

(
𝑡 − 1

𝑡

)
−𝑖 ln

(
𝑡 − 1

𝑡

)
= 𝑖 ln

( 𝑡

𝑡 − 1

)
≤ ln (𝑓 (x0) − 𝑓 (x∗)) / : ln

(
𝑡 − 1

𝑡

)
𝑖 ≤

(
ln

( 𝑡

𝑡 − 1

))−1

ln (𝑓 (x0) − 𝑓 (x∗))

Now Taylor expansion gives for 𝑡 ≥ 3

ln

(
1 + 1

𝑡 − 1

)
≥ 1

𝑡 − 1

− 1

2(𝑡 − 1)2
=

2𝑡 − 3

2𝑡2 − 4𝑡 + 2

,

so (
ln

(
1 + 1

𝑡 − 1

))−1

≤ 2𝑡2 − 4𝑡 + 2

2𝑡 − 3

,

which is bounded above by 𝑡 for all 𝑡 ≥ 2 since 𝑡 (2𝑡 − 3) = 2𝑡2 − 3𝑡 ≥ 2𝑡2 − 4𝑡 + 2 for all 𝑡 ≥ 2.

Plugging back 𝑡 := 4𝑛 − 4 we get that for all 𝑛 ≥ 2 we have 𝑡 ≥ 3 and hence

𝑖 ≤ (4𝑛 − 4) ln (𝑓 (x0) − 𝑓 (x∗)) = (4𝑛 − 4) · ln 2 · log
2
(𝑓 (x0) − 𝑓 (x∗)) ,

and the number of iterations is at most one unit larger. Since 𝑓 (x0) − 𝑓 (x∗) ≤ 𝑓gap and ln(2) =
0.693147 · · · ≤ 3/4, we have that the number of iterations is at most 3𝑛 log(𝑓gap). □

Clearly it is now desirable to show how to find halflings quickly. The following lemma will be

helpful in that regard.

Lemma 9 (Powers of Two). Let Γ2 = {1, 2, 4, 8, . . . } and x be a feasible solution of (IP). If h satisfies
𝑓 (x + h) ≤ 𝑓 (x + 𝜆g) for each x-feasible step pair (g, 𝜆) ∈ G(𝐴) × Γ2, then h is a halfling.

Proof. Consider any Graver-best step pair (g∗, 𝜆∗) ∈ G(𝐴) × N, let 𝜆 := 2
⌊log𝜆∗ ⌋

, and choose

1

2
< 𝛾 ≤ 1 in such a way that 𝜆 = 𝛾𝜆∗. Convexity of 𝑓 yields

𝑓 (x0) − 𝑓 (x0 + 𝜆g∗) ≥ 𝑓 (x0) − [(1 − 𝛾) 𝑓 (x0) + 𝛾 𝑓 (x0 + 𝜆∗g∗)]
= 𝛾 (𝑓 (x0) − 𝑓 (x0 + 𝜆∗g∗))

≥ 1

2

(𝑓 (x0) − 𝑓 (x0 + 𝜆∗g∗)) .

This shows that 𝜆g∗ is a halfling, and by the definition of h, 𝑓 (x + h) ≤ 𝑓 (x + 𝜆g∗) and thus h is a

halfling as well. □

This makes it clear that the main task is to find, for each 𝜆 ∈ Γ2, a step h which is at least as good

as any feasible 𝜆g with g ∈ G(𝐴). We need the notion of a best solution:

Definition 10 (𝑆-best solution). Let 𝑆, 𝑃 ⊆ R𝑛
. We say that x∗ ∈ 𝑃 is a solution of

𝑆-best {𝑓 (x) | x ∈ 𝑃} (𝑆-best)

if 𝑓 (x∗) ≤ min{𝑓 (x) | x ∈ 𝑃 ∩ 𝑆}. If 𝑃 ∩ 𝑆 is empty, we say 𝑆-best {𝑓 (x) | x ∈ 𝑃} has no solution.
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In other words, x∗ has to belong to 𝑃 and be at least as good as any point in 𝑃 ∩ 𝑆 . Note that to
define the notion of an 𝑆-best solution to be a “no solution” if 𝑃 ∩ 𝑆 = ∅ might look unnatural as

one might require any x ∈ 𝑃 if 𝑃 ∩ 𝑆 = ∅. However, this would make (𝑆-best) as hard as finding

some x ∈ 𝑃 (just take 𝑆 = ∅), but intuitively (𝑆-best) should be an easier problem. The following is

a central notion.

Definition 11 (Augmentation IP). For an (IP) instance (𝐴, 𝑓 , b, l, u), its feasible solution x ∈ Z𝑛
,

and an integer 𝜆 ∈ N, the Augmentation IP problem is to solve

G(𝐴)-best{𝑓 (x + 𝜆g) | 𝐴g = 0, l ≤ x + 𝜆g ≤ u, g ∈ Z𝑛} . (AugIP)

Let (𝐴, 𝑓 , b, l, u) be an instance of (IP), x a feasible solution, and 𝜆 ∈ N. We call the pair (x, 𝜆)
an (AugIP) instance for (𝐴, 𝑓 , b, l, u). If clear from the context, we omit the (IP) instance (𝐴, 𝑓 , b, l, u).

By Lemma 9 we obtain a halfling by solving (AugIP) for each 𝜆 ∈ Γ2 and picking the best solution.

Given an initial feasible solution x0 and a fast algorithm for (AugIP), we can solve (IP) quickly:

Lemma 12 (((AugIP) and x0) =⇒ (IP)). Given an initial feasible solution x0 to (IP), (IP) can be
solved by solving

3𝑛(log ∥u − l∥∞ + 1) log(𝑓 (x0) − 𝑓 (x∗)) ≤ 3𝑛(log ∥u − l∥∞ + 1) log

(
𝑓
[l,u]

max

)
instances of (AugIP), where x∗ is any optimum of (IP).

Proof. Observe that no 𝜆 ∈ Γ2 = {1, 2, 4, . . . } greater than ∥u − l∥∞ results in a non-zero

x-feasible step pair. Thus, by Lemma 9, to compute a halfling for x it suffices to solve (AugIP)

for all 𝜆 ∈ Γ2, 𝜆 ≤ ∥u − l∥∞, and there are at most log ∥u − l∥∞ + 1 of these. By Lemma 7,

3𝑛 log (𝑓 (x0) − 𝑓 (x∗)) ≤ 3𝑛 log

(
𝑓gap

)
halfling augmentations suffice and we are done. □

Feasibility. Our goal now is to satisfy the requirement of an initial solution x0.

Lemma 13 ((AugIP) =⇒ x0). Given an instance of (IP), it is possible to compute a feasible solution
x0 for (IP) or decide that (IP) is infeasible by solving O(𝑛 log(∥𝐴, b, l, u∥∞)2) many (AugIP) instances,
plus O(𝑛𝜔 ) time needed to compute an integral solution of 𝐴z = b. Moreover, ⟨x0⟩ ≤ poly⟨b⟩.

Proof. We first compute an integer solution to the system of equations𝐴z = b. This can be done

by computing the Hermite normal form of 𝐴 in time O(𝑛𝜔−1𝑚) ≤ O(𝑛𝜔 ) [8] (using𝑚 ≤ 𝑛). Then
either we conclude that there is no integer solution to 𝐴z = b and hence (IP) is infeasible, or we

find a solution z ∈ Z𝑛
with encoding length polynomially bounded in the encoding length of 𝐴, b.

Next, we will solve an auxiliary IP. Define new relaxed bounds by

ˆ𝑙𝑖 := min{𝑙𝑖 , 𝑧𝑖 }, 𝑢𝑖 := max{𝑢𝑖 , 𝑧𝑖 }, 𝑖 ∈ [𝑛],

and define an objective function
ˆ𝑓 :=

∑𝑛
𝑖=1

ˆ𝑓𝑖 as, for each 𝑖 ∈ [𝑛], ˆ𝑓𝑖 (𝑥𝑖 ) := dist(𝑥𝑖 , [𝑙𝑖 , 𝑢𝑖 ]), which is

0 if 𝑥𝑖 ∈ [𝑙𝑖 , 𝑢𝑖 ] and max{𝑙𝑖 − 𝑥𝑖 , 𝑥𝑖 − 𝑢𝑖 } otherwise. This function has at most three linear pieces,

the first decreasing, the second constantly zero, and the third increasing, and thus each
ˆ𝑓𝑖 is convex

and
ˆ𝑓 is separable convex. Moreover, a solution x has

ˆ𝑓 (x) = 0 if and only if l ≤ x ≤ u.
By Lemma 7, an optimum x0 of min

{
ˆ𝑓 (x)

���𝐴x = b, ˆl ≤ x ≤ û, x ∈ Z𝑛
}
can be computed by

solving 3𝑛(log ∥û − ˆl∥ + 1) log

(
ˆ𝑓
[ˆl,û]

max

)
instances of (AugIP). Since ∥ˆl, û∥∞ is polynomially bounded

in ∥𝐴, b∥∞ and ∥l, u∥∞ and, by definition of
ˆ𝑓 , ˆ𝑓

[ˆl,û]
max

is bounded by 𝑛 · ∥ˆl, û∥∞, we have that

the number of times we have to solve (AugIP) is bounded by O(𝑛 log(∥𝐴, b, l, u∥∞)2). Finally, if
ˆ𝑓 (x0) = 0 then x0 is a feasible solution of (IP) and otherwise (IP) is infeasible. □
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As a corollary of Lemmas 13 and 7, we immediately obtain that a polynomial (AugIP) algorithm

is sufficient for solving (IP) in polynomial time:

Corollary 14 ((AugIP) =⇒ (IP)). Problem (IP) can be solved by solving O(𝑛𝐿2) instances
of (AugIP), where 𝐿 := log(∥𝐴, 𝑓gap, b, l, u∥∞), plus time O(𝑛𝜔 + min{𝑛,𝑚}𝑛𝑚).
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