Definition (*Discrete Fourier Transform (DFT)*): Fix ω to be a primitive *n*-th root of 1. DFT is the mapping $\mathcal{F}: \mathbb{C}^n \to \mathbb{C}^n$ defined as $\mathbf{y} = \mathcal{F}(\mathbf{x}), y_j = \sum_{k=0}^{n-1} x_k \omega^{jk}$, where $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$.

Notice that in FFT, we are computing the graph representation of a polynomial $P(\mathbf{x})$ given by a coefficient vector $\mathbf{p} = (p_0, \ldots, p_{n-1})$ (i.e., $P(\mathbf{x}) = \sum_{j=0}^{n-1} p_j x^j$) with respect to the points $\omega^0, \omega^2, \ldots, \omega^{n-1}$ which is exactly $\mathcal{F}(\mathbf{p})$.

1. Fourier Images. Compute the Fourier images of the following vectors:

(1) (x, x, \ldots, x) for $x \in \mathbb{R}$ (try first x = 1)

 $(2) (1, -1, 1, -1, \dots, 1, -1)$

 $(3) (1,0,1,0,\ldots,1,0)$

(4)
$$(\omega^0, \omega^1, \omega^2, \dots, \omega^{n-1})$$

(5) $(\omega^0, \omega^2, \omega^4, \dots, \omega^{2n-2})$

2. Properties. Which properties are expressed by the 0-th and the n/2-th coefficient of the Fourier image?

3. Basis Image. What is the Fourier image of the unit vector \mathbf{e}_j , i.e., the vector whose *j*-th coordinate is 1 and all other coordinates are 0?

4. Basis Inversion. For each *j* find a vector whose Fourier image is \mathbf{e}_j . How to use this to construct the inversion of \mathcal{F} , i.e., \mathcal{F}^{-1} ?

5. DFT of a Real Vector. Show that the Fourier image \mathbf{y} of a real vector \mathbf{x} is *antisymmetric*, i.e., $\mathbf{y}_j = \overline{\mathbf{y}}_{n-j}$ for all indices j. What will be the Fourier image of an antisymmetric vector?

6. Fast Multiplication. Derive an $\mathcal{O}(n \log n)$ algorithm for multiplying two *n*-bit numbers.

7. Pasha's Task. You're given an *n*-bit binary string $\mathbf{s} \in \{0, 1\}^n$. Define a pair of indices l < r with l + r = 2m (i.e., *m* is the middle index between l, r) to be *nice* if $s_l = s_r = s_m$. Count the number of nice pairs l, r. The naive algorithm runs in $\mathcal{O}(n^2)$ (try all pairs). Try to get $\mathcal{O}(n \log n)$.

Hint1: If you can solve the task for all nice pairs with $s_l = s_r = s_m = 1$, then you can also solve it for al pairs with $s_l = s_r = s_m = 0$. Focus only on the first case.

Hint2: Recall the multiplication of two polynomials: what is the coefficient at x^k in $P \cdot Q$?