MaxCut. In MaxCut, the task is to find an edge cut in an undirected graph of maximum size, i.e., a partition of vertices of G into two sets A, B such that the number of edges between A, B is as large as possible. Find a $1 / 2$-approximation algorithm for MaxCut.

MaxSAT. We are given a logical formula in CNF which may not be satisfiable. We want to satisfy as many clauses as possible. Design a 1/2-approximation algorithm.

IndSet in Interval Graph. An interval graph G of a set of intervals $\left\{\left[x_{1}, y_{1}\right], \ldots,\left[x_{n}, y_{n}\right]\right\}$ has vertices v_{1}, \ldots, v_{n} and has an edge $v_{i} v_{j}$ iff $\left|\left[x_{i}, y_{i}\right] \cap\left[x_{j}, y_{j}\right]\right|>0$, that is, intervals i and j overlap non-trivially. Design a polynomial time algorithm which finds the maximum independent set in an interval graph.
TSP in 2^{n} instead of $n!$. Solving TSP by brute-force would enumerate all hamiltonian cycles, which would take roughly $\mathcal{O}(n!)$ time. Try to find a faster algorithm. Using dynamic programming, one can design an $\mathcal{O}\left(2^{n} \cdot n^{k}\right)$ algorithm for some constant k, which is still exponential, but much better than $\mathcal{O}(n!)$.

