Reductions. Below you will find a "catalogue" of the most famous problems which are NP-complete.
(1) Reduce $0 / 1$ Linear equalities to Sat
(2) Show that Hamiltonian Cycle remains NP-complete even on graphs of degree at most 3. Hint: Reduce (general) Hamiltonian Path to Cubic Hamiltonian Path (the graph must have max degree 3)
(3) Quadratic equations: reduce Sat to the problem of finding a satisfying assignment to a set of quadratic equations in n real variables, i.e. each equation is of the form $\sum_{i=1}^{n} \alpha_{i} x_{i}^{2}+\sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} x_{i} x_{j}+$ $\sum i=1^{n} \gamma_{i} x_{i}+\delta=0$. (Notice that it's not even clear this problem belongs to NP, but your task is only to reduce Sat to it, i.e. show that Quadratic equations is NP-hard.)

P-complete? Say that we defined a problem to be "P-complete" analogously to our definition of NP-completeness (recall that definition!). Which problems in P are P -complete?
Self-reducibility - Decisions problems are enough. Show that it is enough to efficiently solve a decision problem to actually find a solution (in poly time) for the following problems. (One calls this "self-reduction" because you reduce the problem of finding a solution to the problem of deciding whether on exists.)
(1) 3-Colorability
(2) Hamiltonian Path
(3) Subset Sum
(4) $\mathbf{A x}=1$

Vertex Cover on Trees. Show that the Vertex Cover problem is polynomially solvable on trees. What if we're interested in the weighted version of the problem - each vertex has a weight, and we want to find a vertex cover of minimum possible weight?

Catalogue of NP-complete problems

- Logical problems:
- SAT: satisfiability of CNF formulas
- 3-SAT: each clause has at most 3 literals
- 3,3-SAT: moreover each variables appears at most 3 times
- SAT FOR GENERAL FORMULAS: not just CNF
- Circuit SAT: satisfiability of a boolean circuit (has 1 output, can you make the output 1)?
- Graph problems:
- Independent Set: does G have an independent set of size at least k ?
- Clique: does G have a complete subgraph of size at least k ?
- Vertex Cover: is there a subset of vertices U such that each edge has at least one endpoint in U ?
- k-COLORABILITY: can G be colored with k colors, such that no two neighbors have the same color? (hard for any $k \geq 3$)
- Hamiltonian Path: does G contain a path on n vertices (all vertices)
- Hamiltonian uv-path: does G contain a $u v$-path containing all vertices?
- Hamiltonian cycle: does G contain a cycle containing all vertices?
- Travelling salesman problem: edges have lengths $\ell(e) \geq 0$, does G contain a hamiltonian circuit of length at most k ?
- 3D-MATCHING:
- Numerical problems:
- Subset Sum: does a given set of numbers contain a subset with a given sum?
- KnAPSACK: you are given items with weights and values, and a capacity of a knapsack. Is there a subset of items of total value at least C, whose weight does not exceed the capacity of the knapsack?
- 2-Partition is it possible to partition a given set of numbers into two subsets with the same sum?
$-0 / 1$ LINEAR EQUATIONS: you are given a matrix $\mathbf{A} \in\{0,1\}^{m \times n}$. Is there a vector $\mathbf{x} \in$ $\{0,1\}^{n}$ such that $\mathbf{A x}$ is equal to the vector of all ones?

