Definition (Discrete Fourier Transform (DFT)): Fix ω to be a primitive n-th root of 1. DFT is the mapping $\mathcal{F}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ defined as $\mathbf{y}=\mathcal{F}(\mathbf{x}), y_{j}=\sum_{k=0}^{n-1} x_{k} \omega^{j k}$, where $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}$.
Notice that in FFT, we are computing the graph representation of $\mathbf{p}=\left(p_{0}, \ldots, p_{n-1}\right)$ with respect to the points $\omega^{1}, \omega^{2}, \ldots, \omega^{n}$ which is exactly $\mathcal{F}(\mathbf{p})$.

1. Fourier Images. Compute the Fourier images of the following vectors:
(1) (x, x, \ldots, x) for $x \in \mathbb{R}$ (try first $x=1$)
(2) $(1,-1,1,-1, \ldots, 1,-1)$
(3) $(1,0,1,0, \ldots, 1,0)$
(4) $\left(\omega^{0}, \omega^{1}, \omega^{2}, \ldots, \omega^{n-1}\right)$
(5) $\left(\omega^{0}, \omega^{2}, \omega^{4}, \ldots, \omega^{2 n-2}\right)$
2. DFT of a Real Vector. Show that the Fourier image \mathbf{y} of a real vector \mathbf{x} is antisymmetric, i.e., $\mathbf{y}_{j}=\overline{\mathbf{y}}_{n-j}$ for all indices j. What will be the Fourier image of an antisymmetric vector?

Definition (Reduction): A problem L reduces to a problem M if there exists a polytime function $f:\{0,1\}^{*} \rightarrow$ $\{0,1\}^{*}$ such that $L(x)=M(f(x))$ for every $x \in\{0,1\}^{*}$. Intuitively: $L \rightarrow M$ if there's a polytime algorithm reducing Yes-instances of L to Yes-instances of M, and No-instances to No-instances.
3. Properties of \rightarrow. Prove that the " \rightarrow " relation in the space of problems has the following properties:

- It is reflexive: $A \rightarrow A$
- It is transitive: $A \rightarrow B \wedge B \rightarrow C \Rightarrow A \rightarrow C$
- It is not antisymmetric (recall the definition)
- There exist mutually irreducible problems (A does not reduce to B and B does not reduce to A)

4. Easy Problems. Show that the following problems are polynomial-time solvable:

- 2-Coloring (decide whether a graph G can be colored with 2 colors.)
- Does G have a clique of size 42 ?
- Given a formula in disjunctive normal form (DNF), does it have a satisfying assignment? (An example of a formula in DNF is $\left(x_{1} \wedge \neg x_{2} \wedge x_{3}\right) \vee\left(x_{2} \wedge x_{4} \wedge x_{5}\right) \vee\left(\neg x_{1} \wedge \neg x_{2} \wedge x_{4}\right)$ - notice that it is composed of clauses which are a conjunction of literals, and the formula is obtained by joining the clauses with disjunctions.)

