Definition (Discrete Fourier Transform (DFT)): Fix ω to be a primitive n-th root of 1. DFT is the mapping $\mathcal{F}: \mathbb{C}^n \to \mathbb{C}^n$ defined as $\mathbf{y} = \mathcal{F}(\mathbf{x}), y_j = \sum_{k=0}^{n-1} x_k \omega^{jk}$, where $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$.

Notice that in FFT, we are computing the graph representation of $\mathbf{p} = (p_0, \dots, p_{n-1})$ with respect to the points $\omega^1, \omega^2, \ldots, \omega^n$ which is exactly $\mathcal{F}(\mathbf{p})$.

1. Fourier Images. Compute the Fourier images of the following vectors:

- (1) (x, x, \ldots, x) for $x \in \mathbb{R}$ (try first x = 1)
- $(2) (1, -1, 1, -1, \dots, 1, -1)$

- (3) $(1,0,1,0,\ldots,1,0)$ (4) $(\omega^{0},\omega^{1},\omega^{2},\ldots,\omega^{n-1})$ (5) $(\omega^{0},\omega^{2},\omega^{4},\ldots,\omega^{2n-2})$

2. DFT of a Real Vector. Show that the Fourier image y of a real vector x is *antisymmetric*, i.e., $y_j = \overline{y}_{n-j}$ for all indices j. What will be the Fourier image of an antisymmetric vector?

Definition (*Reduction*): A problem L reduces to a problem M if there exists a polytime function $f : \{0, 1\}^* \rightarrow$ $\{0,1\}^*$ such that L(x) = M(f(x)) for every $x \in \{0,1\}^*$. Intuitively: $L \to M$ if there's a polytime algorithm reducing YES-instances of L to YES-instances of M, and NO-instances to NO-instances.

3. Properties of \rightarrow . Prove that the " \rightarrow " relation in the space of problems has the following properties:

- It is reflexive: $A \to A$
- It is transitive: $A \to B \land B \to C \Rightarrow A \to C$
- It is not *antisymmetric* (recall the definition)
- There exist mutually irreducible problems (A does not reduce to B and B does not reduce to A)
- 4. Easy Problems. Show that the following problems are polynomial-time solvable:
 - 2-COLORING (decide whether a graph G can be colored with 2 colors.)
 - Does G have a clique of size 42?
 - Given a formula in disjunctive normal form (DNF), does it have a satisfying assignment? (An example of a formula in DNF is $(x_1 \land \neg x_2 \land x_3) \lor (x_2 \land x_4 \land x_5) \lor (\neg x_1 \land \neg x_2 \land x_4)$ – notice that it is composed of *clauses* which are a conjunction of literals, and the formula is obtained by joining the clauses with disjunctions.)