
https://research.koutecky.name/db/teaching:ads2223_tutorial
koutecky+ads2@iuuk.mff.cuni.cz 3rd tutorial

Algorithms and Data Structures II
October 13th, 2022

AC Automaton. Construct the AC search automaton for words dar, radar, adam, a.

Too many occurences. Find an example input of patterns and text which has asymptitically more than linear
number of occurences. Specifically, for every n, show that there is input to the Text Search problem such
that |T |+

∑
i |Pi| is Θ(n), and the number of occurences is not O(n).

Naive jumps. Consider the simplified AC algorithm which doesn’t use shortcut edges and always walks along
back edges all the way to the root. Show an example of an input where this algorithm is asymptotically slower
than the actual AC algorithm.

Frequencies of Occurences. Describe an algorithm which, in time O(|T | +
∑

i |Pi|), outputs an array of
frequencies, i.e. fi is how many times Pi appears in T . (Notice that the complexity should not depend on the
number of occurences!)

2D Search. Given an n× n matrix A, decide whether it contains a given m×m submatrix B as a contiguous
submatrix.

Censorship. A censor receives a set of forbidden substrings and a text. He always looks for the left-most
occurence of a forbidden substring in the text (this is an occurence with the left-most end; if there are multiple,
choose the longest one), cuts it out of the text, and repeats the process. Show how to produce a censored text
in linear time.

Dynamic Search. Design a data structure for dynamic searching. The pattern P is fixed, but the characters in
the text T may change, and the data structure should always quickly answer whether the current text contains
the pattern.

Shortest Word without Occurence. Given a set of patterns P1, . . . , Pn over the alphabet {a, . . . , z} and
a number l ∈ N, compute the lexicographically smallest word of length l which does not contain any of the
patterns.

Shortest Universal Word. Given are again patterns P1, . . . , Pn over the alphabet {a, . . . , z}. Find the shortest
word which contains all patterns. Aim for an algorithm with complexity O(2n

∑n
i=1 Ji).

d-dimensional search. Same as the task 2D search, but generally in d dimensions.

Fibonacci words. Let us define Fibonacci words as follows: F0 = a, F1 = b, Fn+2 = FnFn+1. Design an
algorithm which, in a given string over the alphabet {a, b}, finds the longest Fibonacci subword.

1

https://research.koutecky.name/db/teaching:ads2223_tutorial
mailto:koutecky+ads2@iuuk.mff.cuni.cz

	AC Automaton
	Too many occurences
	Naive jumps
	Frequencies of Occurences
	2D Search
	Censorship
	Dynamic Search
	1. Fibonacci words

