https://research.koutecky.name/db/teaching:ads12324_tutorial koutecky+ads1@iuuk.mff.cuni.cz 9. tutorial

A 1-UNIVERSAL SYSTEM OF FUNCTIONS

Recall the definition of a *c*-universal system of functions from $\mathcal{U} \to [m]$ for $c \ge 1$: a system \mathcal{H} is *c*-universal if for every two distinct elements $x, y \in \mathcal{U}$, it holds that $\Pr_{h \in \mathcal{H}}[h(x) = h(y)] \le c/m$.

Let the number of buckets m be some prime number p. (This is fine because of Bertrand's postulate: for every desired m, there is a prime number $p \leq 2m$, so we are asymptotically not losing any space.) Notice that \mathbb{Z}_p is a field. Let $\mathcal{U} = \mathbb{Z}_p^d$. We will have one hashing function for each d-tuple $\mathbf{t} \in \mathbb{Z}_p^d$ defined by the scalar product $h_{\mathbf{t}}(\mathbf{x}) = \mathbf{t} \cdot \mathbf{x}$.

Theorem. The system of function $\mathcal{H} = \{h_{\mathbf{t}} \mid \mathbf{t} \in \mathbb{Z}_p^d\}$, where $h_{\mathbf{t}}(\mathbf{x}) = \mathbf{t} \cdot \mathbf{x}$, is 1-universal.

Proof. Let $\mathbf{x}, \mathbf{y} \in \mathbb{Z}_d^p$ be two distinct vectors. Let k be a coordinate where $x_k \neq y_k$. Since the scalar product is invariant under permuting the coordinates, we can reorder the coordinates so that \mathbf{x} and \mathbf{y} differ in the last coordinate, that is, k = d.

Let us now choose t coordinate by coordinate, and compute the probability of a collision. (Equalities mod p will be denoted \equiv .)

$$\Pr_{\mathbf{t}\in\mathbb{Z}_p^d}[h_{\mathbf{t}}(\mathbf{x}) = h_{\mathbf{t}}(\mathbf{y})] = \Pr[\mathbf{x}\cdot\mathbf{t}\equiv\mathbf{y}\cdot\mathbf{x}] = \Pr[(\mathbf{x}-\mathbf{y})\cdot t\equiv 0] =$$
$$=\Pr\left[\sum_{i=1}^d (x_i - y_i)t_i \equiv 0\right] = \Pr\left[(x_d - y_d)t_d \equiv -\sum_{i=1}^{d-1} (x_i - y_i)t_i\right] .$$

If we have already chosen t_1, \ldots, t_{d-1} , and now we are choosing t_d randomly, a collision will occur for exactly one choice: the last expression is a linear equality of the form az = b for non-zero a, and this has a unique solution z in any field. Thus, the probability of a collision is at most 1/p = 1/m, as required by 1-universality.

1. Data Structure 1. Construct a (composite) data structure which can handle the following operations in the required time:

- Init() initializes the data structure– $\mathcal{O}(1)$.
- INSERT(X) inserts element X, if it is not yet in the structure $\mathcal{O}(\log n)$.
- DELETE(X) deletes X, if it is in the structure $\mathcal{O}(\log n)$.
- DELETE_IN_PLACE(I) deletes element which was the I-th added $\mathcal{O}(\log n)$.
- GET_PLACE(X) returns a number I such that X was the I-th added element $\mathcal{O}(\log n)$.

2. Data Structure 2. An electrician wants to maintain a list of clients indexed by their IDs together with a record of whether they are male or female. Design a data structure which handles the following operations in the time $\mathcal{O}(\log n)$:

- INSERT(K, C) inserts a new client C with ID=K, designates them female.
- UPDATE(K) designates client with ID=K as male.
- FINDDIFF(K) finds the difference between the numbers of male and female clients among those with $ID \leq K$.

3. Window. Numbers are arriving on input. Whenever a new number arrives, report the median and average of the last k numbers. Try to attain $\mathcal{O}(\log k)$ complexity per report.

4. (a, b) in one direction. Modify the INSERT and DELETE operations in (a, b)-trees so that they only make modifications on the way down.

5. Sum. Say we have a set of natural numbers and a number x. We want to find out as quickly as possible whether our set contains a pair of elements which sum up to x.

What if I had a fixed x, but wanted my set to be dynamic, that is, I can INSERT and DELETE elements, and I want to be able to quickly check whether there is or isn't a pair of elements summing up to x. In what time is this possible?

6. Convenience Store. Frank's convenience store has customers come in and add orders into a queue; an order is a triple (item, quantity, name of customer). Frank would like to have a good overview of whether he has enough goods of each kind in stock.

Design a data structure for his store, which will be able to execute the following operations in $\mathcal{O}(1)$ time:

- (1) ENQUEUE(R) enqueues the order R
- (2) DEQUEUE() prints the next order and removes it from the queue.
- (3) QUERY(P) for item P reports the total quantity of orders of this product.

(I'm assuming you know the FIFO queue data structure.) You are guaranteed that the queue will never contain more than m orders, and you know that there are n types of items in the store. Can you find a solution in space $\mathcal{O}(n)$? What about space $\mathcal{O}(m)$, in case that $m \ll n$?

7. Collision. You were given a hash function $h : [U] \to [m]$. Unless you know anything else about the function, how many function evaluations do you need to find a set of k elements of [U] which all collide, that is, $\{a_1, \ldots, a_k\} \subseteq [U]$ and $h(a_1) = \cdots = h(a_k)$?

8. List. Design a data structure for storing a list such that we can quickly find the k-the element and move it to the beginning of the list.