
https://research.koutecky.name/db/teaching:ads12324_tutorial

koutecky+ads1@iuuk.mff.cuni.cz 9. tutorial
Algorithms and Data Structures I

April 22, 2024

A 1-universal System of Functions

Recall the definition of a c-universal system of functions from U → [m] for c ≥ 1: a system H is c-universal if
for every two distinct elements x, y ∈ U , it holds that Prh∈H[h(x) = h(y)] ≤ c/m.
Let the number of buckets m be some prime number p. (This is fine because of Bertrand’s postulate: for every
desired m, there is a prime number p ≤ 2m, so we are asymptotically not losing any space.) Notice that Zp is
a field. Let U = Zd

p. We will have one hashing function for each d-tuple t ∈ Zd
p defined by the scalar product

ht(x) = t · x.

Theorem. The system of function H = {ht | t ∈ Zd
p}, where ht(x) = t · x, is 1-universal.

Proof. Let x,y ∈ Zp
d be two distinct vectors. Let k be a coordinate where xk ̸= yk. Since the scalar product

is invariant under permuting the coordinates, we can reorder the coordinates so that x and y differ in the last
coordinate, that is, k = d.
Let us now choose t coordinate by coordinate, and compute the probability of a collision. (Equalities mod p
will be denoted ≡.)

Pr
t∈Zd

p

[ht(x) = ht(y)] = Pr[x · t ≡ y · x] = Pr[(x− y) · t ≡ 0] =

= Pr

[
d∑

i=1

(xi − yi)ti ≡ 0

]
= Pr

[
(xd − yd)td ≡ −

d−1∑
i=1

(xi − yi)ti

]
.

If we have already chosen t1, . . . , td−1, and now we are choosing td randomly, a collision will occur for exactly one
choice: the last expression is a linear equality of the form az = b for non-zero a, and this has a unique solution
z in any field. Thus, the probability of a collision is at most 1/p = 1/m, as required by 1-universality. □

1. Data Structure 1. Construct a (composite) data structure which can handle the following operations in the
required time:

• Init() – initializes the data structure– O(1).
• INSERT(X) – inserts element X, if it is not yet in the structure – O(log n).
• DELETE(X) – deletes X, if it is in the structure – O(log n).
• DELETE_IN_PLACE(I) – deletes element which was the I-th added – O(log n).
• GET_PLACE(X) – returns a number I such that X was the I-th added element – O(log n).

2. Data Structure 2. An electrician wants to maintain a list of clients indexed by their IDs together with a
record of whether they are male or female. Design a data structure which handles the following operations in
the time O(log n):

• INSERT(K, C) – inserts a new client C with ID=K, designates them female.
• UPDATE(K) – designates client with ID=K as male.
• FINDDIFF(K) – finds the difference between the numbers of male and female clients among those with
ID ≤ K.

3. Window. Numbers are arriving on input. Whenever a new number arrives, report the median and average of
the last k numbers. Try to attain O(log k) complexity per report.

4. (a, b) in one direction. Modify the INSERT and DELETE operations in (a, b)-trees so that they only make
modifications on the way down.

5. Sum. Say we have a set of natural numbers and a number x. We want to find out as quickly as possible
whether our set contains a pair of elements which sum up to x.
What if I had a fixed x, but wanted my set to be dynamic, that is, I can INSERT and DELETE elements, and I
want to be able to quickly check whether there is or isn’t a pair of elements summing up to x. In what time is
this possible?

1

https://research.koutecky.name/db/teaching:ads112324_tutorial
mailto:koutecky+ads1@iuuk.mff.cuni.cz


https://research.koutecky.name/db/teaching:ads12324_tutorial

koutecky+ads1@iuuk.mff.cuni.cz 9. tutorial
Algorithms and Data Structures I

April 22, 2024

6. Convenience Store. Frank’s convenience store has customers come in and add orders into a queue; an order is
a triple (item, quantity, name of customer). Frank would like to have a good overview of whether he has enough
goods of each kind in stock.
Design a data structure for his store, which will be able to execute the following operations in O(1) time:

(1) ENQUEUE(R) — enqueues the order R
(2) DEQUEUE() — prints the next order and removes it from the queue.
(3) QUERY(P) — for item P reports the total quantity of orders of this product.

(I’m assuming you know the FIFO queue data structure.) You are guaranteed that the queue will never contain
more than m orders, and you know that there are n types of items in the store. Can you find a solution in space
O(n)? What about space O(m), in case that m ≪ n?

7. Collision. You were given a hash function h : [U ] → [m]. Unless you know anything else about the function,
how many function evaluations do you need to find a set of k elements of [U ] which all collide, that is,
{a1, . . . , ak} ⊆ [U ] and h(a1) = · · · = h(ak)?

8. List. Design a data structure for storing a list such that we can quickly find the k-the element and move it
to the beginning of the list.

2

https://research.koutecky.name/db/teaching:ads112324_tutorial
mailto:koutecky+ads1@iuuk.mff.cuni.cz

	A 1-universal System of Functions
	1. Data Structure 1
	2. Data Structure 2
	3. Window
	4. (a,b) in one direction
	5. Sum
	6. Convenience Store
	7. Collision
	8. List


