A 1-universal System of Functions

Recall the definition of a c-universal system of functions from $\mathcal{U} \rightarrow[m]$ for $c \geq 1$: a system \mathcal{H} is c-universal if for every two distinct elements $x, y \in \mathcal{U}$, it holds that $\operatorname{Pr}_{h \in \mathcal{H}}[h(x)=h(y)] \leq c / m$.
Let the number of buckets m be some prime number p. (This is fine because of Bertrand's postulate: for every desired m, there is a prime number $p \leq 2 m$, so we are asymptotically not losing any space.) Notice that \mathbb{Z}_{p} is a field. Let $\mathcal{U}=\mathbb{Z}_{p}^{d}$. We will have one hashing function for each d-tuple $\mathbf{t} \in \mathbb{Z}_{p}^{d}$ defined by the scalar product $h_{\mathbf{t}}(\mathbf{x})=\mathbf{t} \cdot \mathbf{x}$.

Theorem. The system of function $\mathcal{H}=\left\{h_{\mathbf{t}} \mid \mathbf{t} \in \mathbb{Z}_{p}^{d}\right\}$, where $h_{\mathbf{t}}(\mathbf{x})=\mathbf{t} \cdot \mathbf{x}$, is 1-universal.
Proof. Let $\mathbf{x}, \mathbf{y} \in \mathbb{Z}_{d}^{p}$ be two distinct vectors. Let k be a coordinate where $x_{k} \neq y_{k}$. Since the scalar product is invariant under permuting the coordinates, we can reorder the coordinates so that \mathbf{x} and \mathbf{y} differ in the last coordinate, that is, $k=d$.
Let us now choose \mathbf{t} coordinate by coordinate, and compute the probability of a collision. (Equalities mod p will be denoted \equiv.)

$$
\begin{array}{r}
\operatorname{Pr}_{\mathbf{t} \in \mathbb{Z}_{p}^{d}}\left[h_{\mathbf{t}}(\mathbf{x})=h_{\mathbf{t}}(\mathbf{y})\right]=\operatorname{Pr}[\mathbf{x} \cdot \mathbf{t} \equiv \mathbf{y} \cdot \mathbf{x}]=\operatorname{Pr}[(\mathbf{x}-\mathbf{y}) \cdot t \equiv 0]= \\
=\operatorname{Pr}\left[\sum_{i=1}^{d}\left(x_{i}-y_{i}\right) t_{i} \equiv 0\right]=\operatorname{Pr}\left[\left(x_{d}-y_{d}\right) t_{d} \equiv-\sum_{i=1}^{d-1}\left(x_{i}-y_{i}\right) t_{i}\right] .
\end{array}
$$

If we have already chosen t_{1}, \ldots, t_{d-1}, and now we are choosing t_{d} randomly, a collision will occur for exactly one choice: the last expression is a linear equality of the form $a z=b$ for non-zero a, and this has a unique solution z in any field. Thus, the probability of a collision is at most $1 / p=1 / m$, as required by 1-universality.

1. Data Structure 1. Construct a (composite) data structure which can handle the following operations in the required time:

- Init () - initializes the data structure- $\mathcal{O}(1)$.
- InSERT (X) - inserts element X, if it is not yet in the structure $-\mathcal{O}(\log n)$.
- Delete (X) - deletes X, if it is in the structure $-\mathcal{O}(\log n)$.
- DELETE_IN_PLACE (I) - deletes element which was the I-th added $-\mathcal{O}(\log n)$.
- GET_PLACE (X) - returns a number I such that X was the I-th added element $-\mathcal{O}(\log n)$.

2. Data Structure 2. An electrician wants to maintain a list of clients indexed by their IDs together with a record of whether they are male or female. Design a data structure which handles the following operations in the time $\mathcal{O}(\log n)$:

- $\operatorname{INSERT}(K, C)$ - inserts a new client C with ID $=K$, designates them female.
- UPDATE (K) - designates client with $\operatorname{ID}=K$ as male.
- FINDDIFF (K) - finds the difference between the numbers of male and female clients among those with ID $\leq K$.

3. Window. Numbers are arriving on input. Whenever a new number arrives, report the median and average of the last k numbers. Try to attain $\mathcal{O}(\log k)$ complexity per report.
4. (a, b) in one direction. Modify the INSERT and DELETE operations in (a, b)-trees so that they only make modifications on the way down.
5. Sum. Say we have a set of natural numbers and a number x. We want to find out as quickly as possible whether our set contains a pair of elements which sum up to x.
What if I had a fixed x, but wanted my set to be dynamic, that is, I can INSERT and DELETE elements, and I want to be able to quickly check whether there is or isn't a pair of elements summing up to x. In what time is this possible?
6. Convenience Store. Frank's convenience store has customers come in and add orders into a queue; an order is a triple (item, quantity, name of customer). Frank would like to have a good overview of whether he has enough goods of each kind in stock.
Design a data structure for his store, which will be able to execute the following operations in $\mathcal{O}(1)$ time:
(1) ENQUEUE (R) - enqueues the order R
(2) DEQUEUE () - prints the next order and removes it from the queue.
(3) QUERY (P) - for item P reports the total quantity of orders of this product.
(I'm assuming you know the FIFO queue data structure.) You are guaranteed that the queue will never contain more than m orders, and you know that there are n types of items in the store. Can you find a solution in space $\mathcal{O}(n)$? What about space $\mathcal{O}(m)$, in case that $m \ll n$?
7. Collision. You were given a hash function $h:[U] \rightarrow[m]$. Unless you know anything else about the function, how many function evaluations do you need to find a set of k elements of $[U]$ which all collide, that is, $\left\{a_{1}, \ldots, a_{k}\right\} \subseteq[U]$ and $h\left(a_{1}\right)=\cdots=h\left(a_{k}\right)$?
8. List. Design a data structure for storing a list such that we can quickly find the k-the element and move it to the beginning of the list.
