- **1.** Array \to BST. Design an algorithm which takes on input a sorted array of numbers, and creates a perfectly balanced BST in linear time. (A BST T is perfectly balanced if for all $v \in T$ it holds that $||L(v)| |R(v)|| \le 1$, that is, the size of the left and right subtrees differs by at most 1.)
- **2.** BST_SPLIT. Design a BST_SPLIT operation which takes on input a BST T and a value s and outputs two BSTs T_1, T_2 such that T_1 contains those values of T which are smaller than s, and T_2 contains those values of T which are > s.
- **3. AVL evolution.** Draw the evolution of an AVL tree as we insert (in this order) the numbers 10, 20, 15, 25, 30, 16, 18, 19. What happens when we then delete 30?
- **4. BST improvements.** Consider a general BST maintaing (key, value) pairs, sorted by the key. Implement the following operations while maintaining the $\mathcal{O}(\text{dept})$ complexity. You may need to store some additional information in the nodes.
 - (1) Min, Max of a given interval of keys. (E.g. $\max(r, s)$ should return the largest value of keys between r and s.)
 - (2) Average of a given interval of keys.
 - (3) Assume that the values are matrices A_1, \ldots, A_n of size $m \times m$ and for any interval of keys r, s we want to be able to quickly compute what is the matrix product $A_r \cdot A_{r+1} \cdots A_s$. (Caution: this operation is not commutative. Unlike for max above, the order of matrix multiplications matters. Disregard the complexity of a single matrix multiplication when estimating the O(depth) complexity.)
 - (4) Adding δ to all values in a given interval.
- **5. AVL improvements.** What adjustments are needed to make all of this work for an AVL tree? (So that the complexity of these operations is $\mathcal{O}(\log n)$.)
- **6. Depth.** Choose a representation of an AVL tree (e.g., during the lecture we said that we will maintain a sign -, 0, + at each vertex). You would like to now adjust the INSERT/DELETE operations so that you can answer in $\mathcal{O}(1)$ a query for the height of any subtree. Is it possible? You may need to change the representation.
- 7. Data Structure 1. Construct a (composite) data structure which can handle the following operations in the required time:
 - Init() initializes the data structure– $\mathcal{O}(1)$.
 - INSERT(X) inserts element X, if it is not yet in the structure $\mathcal{O}(\log n)$.
 - DELETE(X) deletes X, if it is in the structure $\mathcal{O}(\log n)$.
 - DELETE_IN_PLACE(I) deletes element which was the I-th added $\mathcal{O}(\log n)$.
 - GET_PLACE(X) returns a number I such that X was the I-th added element $\mathcal{O}(\log n)$.
- 8. Data Structure 2. An electrician wants to maintain a list of clients indexed by their IDs together with a record of whether they are male or female (bonus task: handle more genders). Design a data structure which handles the following operations in the time $\mathcal{O}(\log n)$:
 - INSERT(K, C) inserts a new client C with ID=K, designates them female.
 - UPDATE(K) designates client with ID=K as male.
 - FINDDIFF(K) finds the difference between the numbers of male and female clients among those with $\mathtt{ID} \leq K$.
- **9. Window.** Numbers are arriving on input. Whenever a new number arrives, report the median and average of the last k numbers. Try to attain $\mathcal{O}(\log k)$ complexity per report.
- 10. Subsequence. We are given a sequence of n numbers and we want to find the longest increasing subsequence (doesn't have to be contiguous) in time $\mathcal{O}(n \log n)$. (We have already seen this task in our first tutorial, and we could only solve it in time $\mathcal{O}(n^2)$ by finding the longest path in a DAG.)