
https://research.koutecky.name/db/teaching:ads12122_tutorial

koutecky@iuuk.mff.cuni.cz 1st tutorial
Algorithms and Data Structures I

February 19th, 2024

Introduction

Tutorial principles.

• You want to learn something.
• I am trying to create space for it.
• That’s why the highest priority is what you need:

– ... understand something from the lecture
– ... understand a task from the previous tutorial
– ... understand some homework assignment, etc.

• Don’t be afraid to ask questions
• A few general tips:

– When you feel lost, try to play with examples. (E.g., if you can’t solve a task for general n, k, try
what it says for small values. Don’t know what an algorithm does? Try it on small input.)

– Try to explain where you got stuck to your classmates. It will help you understand what’s really
going on, get your thinking clearer.

– If you still don’t know, reach out, I will try to help.

Logistical details.

• Email me at koutecky+ads1@iuuk.mff.cuni.cz.
• The tutorial website is at http://research.koutecky.name/db/teaching:ads12324_tutorial
• You need to get 100 points to gain credit. Points are awarded for:

– Homework. There will be a batch of tasks about every other week. The total amount of points
obtainable will be at least 150. You need to solve at least one task from each batch, not necessarily
within the deadline.

– Quizzes. At the beginning of each tutorial, there will be a short quizz where I will ask about
something basic from the previous lectures. The purpose is to motivate you to come prepared –
the tutorial is a space to apply what you have learned in the lecture, not to repeat the lecture ;-)

– Grading each other’s homework. If you are confident about your solution, you can email me and
say you want to be a student grader; if your solution is indeed correct, I will let you correct the
other solutions and gain extra points for it.

– A small project. The topic needs to be really good and original.
– I don’t require attendance. If you feel that you can benefit more from self-study or anything else, go
for it.

• Tasks are handed into the OWL system: https://kam.mff.cuni.cz/owl/
• What’s the best space to discuss? Discord? Telegram? ...?
• If you need further help, try getting it from your classmates. If there’s more of you who need help with
the same thing, email me and we’ll set up a meeting :) Also DO use the student guides and mentors,
they are here for you!

1

https://research.koutecky.name/db/teaching:ads112122_tutorial
mailto:koutecky@iuuk.mff.cuni.cz
http://research.koutecky.name/db/teaching:ads12324_tutorial


https://research.koutecky.name/db/teaching:ads12122_tutorial

koutecky@iuuk.mff.cuni.cz 1st tutorial
Algorithms and Data Structures I

February 19th, 2024

Algorithms. A newspaper tasks a reporter to write an article on the working conditions of a certain company.
Thus, he has to try as many positions in this company as possible. However, he would like his salary to keep
increasing. The company posts advertisements for various positions at certain times. Mathematically speaking,
we are given a sequence p1, . . . , pn of positive real numbers, and we are looking for a longest strictly increasing
subsequence.
How can we solve this problem:

According to the definitiona) Recursivelyb) Recursively with memoizationc)

As a graph problemd) With a clever data structuree)

Complexity.

• What do we neglect and why?
• What does it mean in words: O(n),Ω(n), o(n), ω(n)? How to write it formally (with quantifiers, as a
formula / logical expression)?

Asymptotics. Find as many as possible asymptotic relationships between the following functions: n, log n,
log log n,

√
n, nlogn, 2n, 3n, n3/2, n!, nn.

O-sum. Let f1, f2 be functions s.t. f1 ∈ O(f2). Prove that f1 + f2 ∈ O(f2).

O-max. Prove that O(f + g) = O(max{f, g}).

Recursion. Guess what each function does, prove it, and analyze time and space complexity.

g(x,y):

if y==0 => return 0

else if even(y) => return 2*g(x, y/2)

else => return 2*g(x, y/2) + x

h(x,y):

if x<y => return (0,x)

else:

(a,b) <- 2*h(x/2, y)

if odd(x) => b <- b+1

if b>=y => a <- a+1, b <- b-y

return (a,b)

d(x,y):

if x==y => return x

if even(x) and even(y): return 2*d(x/2, y/2)

if even(x): return d(x/2, y)

if even(y): return d(x, y/2)

if x>y: return d(x-y, y)

else: return d(x, y-x)

2

https://research.koutecky.name/db/teaching:ads112122_tutorial
mailto:koutecky@iuuk.mff.cuni.cz

	Introduction
	Tutorial principles
	Logistical details
	Algorithms
	Complexity
	Asymptotics
	O-sum
	O-max
	Recursion


