ADS1 Exam / 2022

The exam will consist of:

1. Two questions about an algorithm or a data structure from the lecture - describing the
algorithm or data structure, proving they are correct, giving the complexity analysis.

2. Two tasks similar to those from the tutorial - either apply an algorithm / data structure
from the lecture to some problem (need to model the problem appropriately) OR adapt
the algorithm / data structure to solve some problem (need to understand how it works
internally to be able to adapt it appropriately)

The form of the exam is that you will come, get the question sheet, and work on the answers.
Once you are finished with one of the answers, you hand it in, I will read it, point out
anything which is missing / incorrect, give you hints if needed, and you can revise it. At
some point either you will reach a correct solution, or you won’t want to try to improve it
again, or [will feel like I can’t give you any more hints, and then we’ll reach some grade.

Grading

To get a 3 it suffices to know definitions and algorithms / data structures and (with hints)
finish at least one of the “type 2” tasks (perhaps suboptimally).

To get a 2 you need to be able to solve the tasks with some hints, or find a suboptimal
(complexity) algorithm. If we proved some intermediate claims during the lecture, and these
are used in the proofs of correctness/complexity, you need to at least know the statements
of these claims.

To get a 1 you need to analyze the algorithms (correctness and complexity) including the
proofs, and you need to be able to solve the “type 2” tasks mostly independently. (Advice
like “try dynamic programming” and similar is still fine though.)

Topics

Disclaimer: the topics below are NOT specific instances of “type 1”7 questions. It is clear
that some topics are wider and some narrower. However, if you have a good understanding
of all the topics below, you should not be surprised by anything during the lecture.

« BFS, DFS and their edge classifications

« DFS applications: topological sorting, detecting strongly connected components
Dijkstra’s algorithm

Bellman-Ford’s algorithm

Floyd-Warshall’s algorithm (small topic)

Jarnik’s algorithm

« Boruvka’s algorithm

Kruskal’s algoritmus + Union-Find data structure using trees

Binary Search Trees (BSTs) in general

AVL trees

(a,b)-trees

Red-black trees — we covered these very briefly, but you should be able to describe
the bijection between LLRBs and (2, 4)-trees

Hashing with chaining

Hashing with open addressing (warning, I did this at the tutorial; if you don’t under-
stand it, please read JeffE’s notes)

Universal hashing

Master theorem - analyzing the complexity of Divide & Conquer algorithms using
the recursion tree

Integer multiplication using Karatsuba’s algorithm

MomSelect (finding the k-th smallest element in an array in linear time)

Edit Distance dynamic programming algorithm

Longest Increasing Subsequence dynamic programming algorithm

Lower bounds: searching in a sorted array is €2(logn), sorting is Q2(nlogn) (only
applies to deterministic and comparison-based algorithms)

	ADS1 Exam / 2022
	Grading
	Topics

