1. Data Structure 1. Construct a (composite) data structure which can handle the following operations in the required time:

- Init () - initializes the data structure- $\mathcal{O}(1)$.
- INSERT (X) - inserts element X, if it is not yet in the structure $-\mathcal{O}(\log n)$.
- $\operatorname{DELETE}(X)-$ deletes X, if it is in the structure $-\mathcal{O}(\log n)$.
- DELETE_IN_PLACE (I) - deletes element which was the I-th added $-\mathcal{O}(\log n)$.
- GET _PLACE (X) - returns a number I such that X was the I-th added element $-\mathcal{O}(\log n)$.

2. Data Structure 2. An electrician wants to maintain a list of clients indexed by their IDs together with a record of whether they are male or female (bonus task: handle more genders). Design a data structure which handles the following operations in the time $\mathcal{O}(\log n)$:

- InSERT (K, C) - inserts a new client C with $\operatorname{ID}=K$, designates them female.
- UPDATE (K) - designates client with ID=K as male.
- FINDDIFF (K) - finds the difference between the numbers of male and female clients among those with ID $\leq K$.

3. Subsequence. We are given a sequence of n numbers and we want to find the longest increasing subsequence (doesn't have to be contiguous) in time $\mathcal{O}(n \log n)$. (We have already seen this task in our first tutorial, and we could only solve it in time $\mathcal{O}\left(n^{2}\right)$ by finding the longest path in a DAG.)
4. Window. Numbers are arriving on input. Whenever a new number arrives, report the median and average of the last k numbers. Try to attain $\mathcal{O}(\log k)$ complexity per report.
5. (a, b) in one direction. Modify the INSERT and DELETE operations in (a, b)-trees so that they only make modifications on the way down.
6. List. Design a data structure for storing a list such that we can quickly find the k-the element and move it to the beginning of the list.
7. Sum. Say we have a set of natural numbers and a number x. We want to find out as quickly as possible whether our set contains a pair of elements which sum up to x.
What if I had a fixed x, but wanted my set to be dynamic, that is, I can INSERT and DELETE elements, and I want to be able to quickly check whether there is or isn't a pair of elements summing up to x. In what time is this possible?
8. Convenience Store. Frank's convenience store has customers come in and add orders into a queue; an order is a triple (item, quantitity, name of customer). Frank would like to have a good overview of whether he has enough goods of each kind in his storage.
Design a data structure for his convenience store, which will be able to execute the following operations in $\mathcal{O}(1)$ time:
(1) ENQUEUE (R) - enqueues the order R
(2) DEQUEUE () - prints the next order and removes it from the queueu
(3) QUERY (P) - for item P reports the total quantity of orders of this product.
(I'm assuming you know the FIFO queue data structure.) You are guaranteed that the queue will never contain more than m orders, and you know that there are n types of items in the store. Can you find a solution in space $\mathcal{O}(n)$? What about space $\mathcal{O}(m)$, in case that $m \ll n$?
You can assume that you can implement a Dictionary data structure such that INSERT, FIND, DELETE run in time $\mathcal{O}(1)$, even though we'll only see this later in the lectures.
