
https://research.koutecky.name/db/teaching:ads12122_tutorial
koutecky@iuuk.mff.cuni.cz 9. tutorial

Algorithms and Data Structures I
April 14, 2022

1. Data Structure 1. Construct a (composite) data structure which can handle the following operations in
the required time:

• Init() – initializes the data structure– O(1).
• INSERT(X) – inserts element X, if it is not yet in the structure – O(logn).
• DELETE(X) – deletes X, if it is in the structure – O(logn).
• DELETE_IN_PLACE(I) – deletes element which was the I-th added – O(logn).
• GET_PLACE(X) – returns a number I such that X was the I-th added element – O(logn).

2. Data Structure 2. An electrician wants to maintain a list of clients indexed by their IDs together with a
record of whether they are male or female (bonus task: handle more genders). Design a data structure which
handles the following operations in the time O(logn):

• INSERT(K, C) – inserts a new client C with ID=K, designates them female.
• UPDATE(K) – designates client with ID=K as male.
• FINDDIFF(K) – finds the difference between the numbers of male and female clients among those with

ID ≤ K.

3. Subsequence. We are given a sequence of n numbers and we want to find the longest increasing subsequence
(doesn’t have to be contiguous) in time O(n logn). (We have already seen this task in our first tutorial, and we
could only solve it in time O(n2) by finding the longest path in a DAG.)

4. Window. Numbers are arriving on input. Whenever a new number arrives, report the median and average
of the last k numbers. Try to attain O(log k) complexity per report.

5. (a, b) in one direction. Modify the INSERT and DELETE operations in (a, b)-trees so that they only make
modifications on the way down.

6. List. Design a data structure for storing a list such that we can quickly find the k-the element and move it
to the beginning of the list.

7. Sum. Say we have a set of natural numbers and a number x. We want to find out as quickly as possible
whether our set contains a pair of elements which sum up to x.
What if I had a fixed x, but wanted my set to be dynamic, that is, I can INSERT and DELETE elements, and I
want to be able to quickly check whether there is or isn’t a pair of elements summing up to x. In what time is
this possible?

8. Convenience Store. Frank’s convenience store has customers come in and add orders into a queue; an
order is a triple (item, quantitity, name of customer). Frank would like to have a good overview of whether he
has enough goods of each kind in his storage.
Design a data structure for his convenience store, which will be able to execute the following operations in O(1)
time:

(1) ENQUEUE(R) — enqueues the order R
(2) DEQUEUE() — prints the next order and removes it from the queueu
(3) QUERY(P) — for item P reports the total quantity of orders of this product.

(I’m assuming you know the FIFO queue data structure.) You are guaranteed that the queue will never contain
more than m orders, and you know that there are n types of items in the store. Can you find a solution in space
O(n)? What about space O(m), in case that m ≪ n?
You can assume that you can implement a Dictionary data structure such that INSERT, FIND, DELETE run in
time O(1), even though we’ll only see this later in the lectures.

1

https://research.koutecky.name/db/teaching:ads112122_tutorial
mailto:koutecky@iuuk.mff.cuni.cz

	1. Data Structure 1
	2. Data Structure 2
	3. Subsequence
	4. Window
	Přesná složitost (a,b)-stromů
	(a,b) v jednom směru
	Seznam
	Součet
	Posloupnost
	Okénko
	Koloniál

