1. Lost Robots. There is a maze and 2 robots at different places in the maze. However, these robots are controlled by the same remote control, which has four buttons - going north, south, east, and west. When a robot receives a command which cannot be executed, it ignores it. How to find a sequence of commands which takes both robots out of the maze? (Once a robot is out of the maze, it stops listening to commands.) How to find the shortest such sequence?
2. Silly Robot. Again a grid maze with hallways and walls. In it, a robot which goes straight and only turns if it hits a wall or the boundary of the maze (i.e., reaches a cell adjacent to a wall, and reaches this cell from a direction orthogonal to the wall). You select the direction in which it turns (left, right, backwards). Find a path from a start cell s to a target cell t with the least number of turns.
3. Few flights. Let's have a map with vertices representing cities and "type 1 " directed edges representing roads, and "type 2" edges representing flights. Assume that gas and car rental are cheap (haha), but flying is expensive, so you can afford at most k flights. Can the whole map be explored with just using k flights? (E.g., there could be cities which are not reachable only by road.)
4. Many paths. Construct a graph on n vertices with vertices s, t which has $2^{\Omega(n)}$ shortest paths from s to t.
5. Likeliest path. Imagine a computer network described by a directed graph, whose vertices correspond to routers and edges are links between them. For each link we have a probability of it being functional. The probability that a certain path is functional is the product of the probabilities of individual links along this path. How to find a path between two routers which is least likely to fail (most likely to work)?
6. Cheapest of shortest. Roads on a map are labeled with two numbers: length and toll. How to find the cheapest among the shortest paths?
7. Dijkstra fail. Construct a graph with integral lengths (without a negative cycle) where Dijkstra's algorithm would run exponentially long. (This is a variant of the algorithm which, if it relaxes a vertex v and changes the estimate for its neighbor u, it opens the neighbor, that is, puts it in the priority queue even if it extracted it previously.)
8. Negative edges $+k$? Can we get rid of negative edges by adding some number $k \in \mathbb{N}$ to all edge lengths, so that we can use Dijkstra's algorithm to find the shortest path even in a graph with negative edges?
9. Max-min tunnel. Let's have a map of a city represented by directed graph. Each edge is labeled by its clearance - what is the highest truck which can pass on this road? That is, given a path, the maximum height of a truck which can pass through the path is determined by the minimum clearance along the path. Given two vertices s, t, how to find a path which allows the tallest load to pass through (i.e., a path with the maximum minimum clearance)?
