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Elections & Bribery:
Geometric Viewpoint



Computational Social Choice

Ancient questions

Who should govern?
How to select them?
What is good for society?
How to detect and fight manipulation?

Old fundamental results

1743-1794: Marquis de Condorcet
1733-1799: Jean-Charles de Borda
1832-1898: Charles Lutwidge Dodgson (aka Lewis Carroll)

Recent topic

Brexit
Trump
Facebook
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Voting

Candidates: N, �, and F.
People: preference (e.g. � � N �F), active/latent, bribery costs, etc.
(simplify: just preference)

Society: how many people of which type ⇒ Society graph:

N � � � F

type 1; w(1) = 21
� � N � F

type 2; w(2) = 10

� � F � N

type 3; w(3) = 10

F � � � N

type 4; w(4) = 21

F � N � �

type 5; w(5) = 42

N � F � �

type 6; w(6) = 42

Society w = (21, 10, 10, 21, 42, 42)
edges ≡ swap distance 1.

Voting rule: given a society,
who should win?

Plurality = most times
first

Condorcet = beats
everyone head-to-head

Dodgson = least
#swaps to Condorcet
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Bribing

N � � � F

type 1; w(1) = 21
� � N � F

type 2; w(2) = 10

� � F � N

type 3; w(3) = 10

F � � � N

type 4; w(4) = 21

F � N � �

type 5; w(5) = 42

N � F � �

type 6; w(6) = 42

society w = (21, 10, 10, 21, 42, 42)

Bribery: cheapest way to move voters s.t. � wins Plurality?
(Assume unit cost per swap.)

Robust model: captures many prior manipulation models – full bribery,
only shift �, pay-per-swap, add/delete voters, etc.

BTW: Society graph + move + change model is “obvious” but new and very
useful! [IJCAI; Faliszewski, Gonen, K., Talmon] and [AAMAS; Knop, K., Mnich]
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Bribing

N � � � F

w ′(1) = 21−15
� � N � F

w ′(2) = 10+15

� � F � N

w ′(3) = 10+15

F � � � N

w ′(4) = 21−15

F � N � �

w ′(5) = 42

N � F � �

w ′(6) = 42

15 15

society w = (21, 10, 10, 21, 42, 42)
move m = (0, . . . , 0,+15,+15, 0, . . . , 0) (arc space)
change ∆ = ∆(m) = (−15,+15,+15,−15, 0, 0)
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w ′(1) = 6
� � N � F

w ′(2) = 25

� � F � N

w ′(3) = 25
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w ′(4) = 6

F � N � �

w ′(5) = 42

N � F � �

w ′(6) = 42

w′ = w + ∆ with ∆ = (−15,+15,+15,−15, 0, 0)
� wins: 48 = w(1) + w(6) = w(4) + w(5) < w(2) + w(3) = 50
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New Algorithms
for Bribery



Complexity of Bribery

Before 2017: Bribery in time f (#types of people) · log(#people) for
“simple” voting rules (many ad-hoc results; all use Lenstra)

, BUT:

f is double-exponential :(

cannot handle different voter costs :(

cannot handle Dodgson’s rule :(

Challenge #1: Replace Lenstra, make single-exp!
Challenge #2: Handle different voter costs! (replace

#types w/ #candidates)

[2014; Bredereck, Chen, Faliszewski, Guo, Niedermeier, Woeginger]

Solved!

Theorem (STACS, ESA, AAMAS; Knop, K., Mnich)

Bribery in time:

1 single-exp f (#candidates) · poly(#types) · log(#people) for “simple” rules,

2 f (#types) · poly(#people) for “complex” rules, incl. Dodgson.
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Previous approach: Lenstra

Observation: |C | candidates ⇒ |C |! voter types.

Variables, coefficients, etc:

wi = #people of type i on input

mij = #people of type i moved to type j

∆(m)i =
∑

j mji −
∑

j mij = change of the move m

w′ = w + ∆(m) = new society after bribery

Sc = #votes obtained by candidate c

cij = cost of moving from type i to type j

min cm minimum cost move

w′ = w + ∆(m) ≥ 0 move m produces a valid society w′∑
i :type i votes for c

w ′i = Sc ∀c aggregate points

Sc? ≥ Sc ∀c 6= c? c? wins

O(|C |!) variables ⇒ apply Lenstra: |C |!|C |!〈w〉 = 22#candidatesO(1)

log(#people)
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Complexity of Bribery (contd.)

Theorem (STACS, ESA, AAMAS; Knop, K., Mnich)

Bribery in time:

1 single-exp f (#candidates) · poly(#types) · log(#people) for “simple” rules,

2 f (#types) · poly(#people) for “complex” rules, incl. Dodgson.

Proof of (1).

Idea: ILP has n-fold structure!
Blocks ∼ types of people,
A block ∼ #ppl moving to other type,
(D · · ·D) ∼ voting rule.


D D · · · D
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


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Proof of (1).

Idea: ILP has n-fold structure!
Blocks ∼ types of people,
A block ∼ #ppl moving to other type,
(D · · ·D) ∼ voting rule.
Adapt/extend algo [Hemmecke, Onn, Romanchuk ’13]

“simple rules”: few constraints, small ‖D‖∞.
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Complexity of Bribery (contd.)

Theorem (STACS, ESA, AAMAS; Knop, K., Mnich)

Bribery in time:

1 single-exp f (#candidates) · poly(#types) · log(#people) for “simple” rules,

2 f (#types) · poly(#people) for “complex” rules, incl. Dodgson.

Proof of (2).

Want: formula ΦDodgson ≡ “F is Dodgson winner” ≡ least #swaps to Condorcet

ΦDodgson ≡ ∃k ∈ N :

{
∃ sequence of k swaps  F is Condorcet winner AND

∀c 6=F at least k + 1 swaps  c is Condorcet winner.

Encode ΦDodgson in terms of society / move / change vectors
⇒ decide ∃x∀y ∃z : Ψ(x, y, z) sentence ⇒ [much modeling work]

⇒ decide ∀x∃y : A(x, y) ≤ b sentence

Thm [Eisenbrand, Shmonin ’08]: Can decide ∀b ∈ Q ∩ Zm ∃x ∈ Zn : Ax ≤ b

in time f (n,m) · poly(‖A,b‖∞)



Complexity of Bribery (contd.)

Theorem (STACS, ESA, AAMAS; Knop, K., Mnich)

Bribery in time:

1 single-exp f (#candidates) · poly(#types) · log(#people) for “simple” rules,

2 f (#types) · poly(#people) for “complex” rules, incl. Dodgson.

Proof of (2).

Want: formula ΦDodgson ≡ “F is Dodgson winner” ≡ least #swaps to Condorcet

ΦDodgson ≡ ∃k ∈ N :

{
∃ sequence of k swaps  F is Condorcet winner AND

∀c 6=F at least k + 1 swaps  c is Condorcet winner.

Encode ΦDodgson in terms of society / move / change vectors
⇒ decide ∃x∀y ∃z : Ψ(x, y, z) sentence ⇒ [much modeling work]

⇒ decide ∀x∃y : A(x, y) ≤ b sentence

Thm [Eisenbrand, Shmonin ’08]: Can decide ∀b ∈ Q ∩ Zm ∃x ∈ Zn : Ax ≤ b

in time f (n,m) · poly(‖A,b‖∞)



Complexity of Bribery (contd.)

Theorem (STACS, ESA, AAMAS; Knop, K., Mnich)

Bribery in time:

1 single-exp f (#candidates) · poly(#types) · log(#people) for “simple” rules,

2 f (#types) · poly(#people) for “complex” rules, incl. Dodgson.

Proof of (2).

Want: formula ΦDodgson ≡ “F is Dodgson winner” ≡ least #swaps to Condorcet

ΦDodgson ≡ ∃k ∈ N :

{
∃ sequence of k swaps  F is Condorcet winner AND

∀c 6=F at least k + 1 swaps  c is Condorcet winner.

Encode ΦDodgson in terms of society / move / change vectors
⇒ decide ∃x∀y ∃z : Ψ(x, y, z) sentence ⇒ [much modeling work]

⇒ decide ∀x∃y : A(x, y) ≤ b sentence

Thm [Eisenbrand, Shmonin ’08]: Can decide ∀b ∈ Q ∩ Zm ∃x ∈ Zn : Ax ≤ b

in time f (n,m) · poly(‖A,b‖∞)



Complexity of Bribery (contd.)

Theorem (STACS, ESA, AAMAS; Knop, K., Mnich)

Bribery in time:

1 single-exp f (#candidates) · poly(#types) · log(#people) for “simple” rules,

2 f (#types) · poly(#people) for “complex” rules, incl. Dodgson.

Proof of (2).

Want: formula ΦDodgson ≡ “F is Dodgson winner” ≡ least #swaps to Condorcet

ΦDodgson ≡ ∃k ∈ N :

{
∃ sequence of k swaps  F is Condorcet winner AND

∀c 6=F at least k + 1 swaps  c is Condorcet winner.

Encode ΦDodgson in terms of society / move / change vectors
⇒ decide ∃x∀y ∃z : Ψ(x, y, z) sentence ⇒ [much modeling work]

⇒ decide ∀x∃y : A(x, y) ≤ b sentence

Thm [Eisenbrand, Shmonin ’08]: Can decide ∀b ∈ Q ∩ Zm ∃x ∈ Zn : Ax ≤ b

in time f (n,m) · poly(‖A,b‖∞)



Modeling Campaigning:
Polytope Games



Campaigning Game

So far: bribe, then vote. What about more rounds?

k-round Campaigning Game:

Given:

Society w0,

cost vectors c1, . . . , c2k ,

round budgets b1, . . . , b2k ∈ N,

voting rule R,

players P and Q.

k = 1 ≡ ∃x∀y : A(x, y) ≤ b ⇒
solvable in f (#types) poly(#people)

k ≥ 2 ≡ ∃x1 · · · ∀yk : A(x1, . . . , yk) ≤ b
BUT

Theorem (Nguyen, Pak ’17)

∀∃∀-ILP is NP-c in dimension ≥ 6!

Play: in each round i ∈ {1, . . . , k},

P picks a move m2i−1 w/ cost
c2i−1m2i−1 ≤ b2i−1 valid for
society w2i−2

⇒ new society
w2i−1 := w2i−2 + ∆(m2i−1)

Q reacts by picking m2i with
cost c2im2i ≤ b2i valid for
society w2i−1

⇒ w2i := w2i−1 + ∆(m2i−1)

P wins if F wins in society w2k

under rule R.
Decide: P has winning strategy?
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Polytope Game(s)

k-round Polytope Game:
Given:

Point x0 ∈ Rn,

polytopes P1,Q1, . . . ,Pk ,Qk ⊆ Rn,
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P picks a move pi ∈ Pi

⇒ x2i−1 := x2i−2 + pi

Q reacts by picking qi ∈ Qi

⇒ x2i := x2i−1 + qi

P wins if x2k ∈W
Decide: P has winning strategy?



Polytope Game(s)

k-round Polytope Game:
Given:

Point x0 ∈ Rn,

polytopes P1,Q1, . . . ,Pk ,Qk ⊆ Rn,

target polytope W ⊆ Rn,

players P and Q.

Play: in each round i ∈ {1, . . . , k},
P picks a move pi ∈ Pi

⇒ x2i−1 := x2i−2 + pi

Q reacts by picking qi ∈ Qi

⇒ x2i := x2i−1 + qi

P wins if x2k ∈W
Decide: P has winning strategy?



Polytope Game(s)

k-round Polytope Game:
Given:

Point x0 ∈ Rn,

polytopes P1,Q1, . . . ,Pk ,Qk ⊆ Rn,

target polytope W ⊆ Rn,

players P and Q.

Play: in each round i ∈ {1, . . . , k},
P picks a move pi ∈ Pi

⇒ x2i−1 := x2i−2 + pi

Q reacts by picking qi ∈ Qi

⇒ x2i := x2i−1 + qi

P wins if x2k ∈W
Decide: P has winning strategy?

Positions in W “resistent” to moves in Qk :

W ′ = {w | ∀q ∈ Qk : w + q ∈W } = W ∼ Qk ⇐ Minkowski difference!



Polytope Game(s)

k-round Polytope Game:
Given:

Point x0 ∈ Rn,

polytopes P1,Q1, . . . ,Pk ,Qk ⊆ Rn,

target polytope W ⊆ Rn,

players P and Q.

Play: in each round i ∈ {1, . . . , k},
P picks a move pi ∈ Pi

⇒ x2i−1 := x2i−2 + pi

Q reacts by picking qi ∈ Qi

⇒ x2i := x2i−1 + qi

P wins if x2k ∈W
Decide: P has winning strategy?

Positions in W “resistent” to moves in Qk :
W ′ = {w | ∀q ∈ Qk : w + q ∈W } = W ∼ Qk ⇐ Minkowski difference!

Positions in W ′ “reachable” by moves in Pk :

W ′′ = {w + p | p ∈ Pk ,w ∈W ′} = W + Pk ⇐ Minkowski sum!



Polytope Game(s)

k-round Polytope Game:
Given:

Point x0 ∈ Rn,

polytopes P1,Q1, . . . ,Pk ,Qk ⊆ Rn,

target polytope W ⊆ Rn,

players P and Q.

Play: in each round i ∈ {1, . . . , k},
P picks a move pi ∈ Pi

⇒ x2i−1 := x2i−2 + pi

Q reacts by picking qi ∈ Qi

⇒ x2i := x2i−1 + qi

P wins if x2k ∈W
Decide: P has winning strategy?

Positions in W “resistent” to moves in Qk :
W ′ = {w | ∀q ∈ Qk : w + q ∈W } = W ∼ Qk ⇐ Minkowski difference!

Positions in W ′ “reachable” by moves in Pk :

W ′′ = {w + p | p ∈ Pk ,w ∈W ′} = W + Pk ⇐ Minkowski sum!



Polytope Game(s)

Positions in W “resistent” to moves in Qk :
W ′ = {w | ∀q ∈ Qk : w + q ∈W } = W ∼ Qk ⇐ Minkowski difference!

Positions in W ′ “reachable” by moves in Pk :

W ′′ = {w + p | p ∈ Pk ,w ∈W ′} = W + Pk ⇐ Minkowski sum!

“Theorem”

Solve in time f (n, d , k) · 〈∑i ‖Pi ,Qi‖∞〉 w/ d = maxi #ineqs describing Pi ,Qi .

Proof.

Repeatedly apply Minkowski difference and sum (we always stay convex).
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k-round Integer Polytope Game:
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Decide: P has winning strategy?
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Proof.
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non-convex BUT is a projection of a convex set) + Integer hull bounds +

Lenstra.
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k-round Nonnegative Integer Polytope Game:
Given:
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W ∼≥0 Qk

What could be done:
nonnegative game?

integer nonneg game?

Thank you!
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