Elections, Bribery, and Integer Programming

Martin Koutecký

Optimization and Discrete Geometry: Theory and Practice, Tel Aviv, April 25th, 2018

Elections & Bribery: Geometric Viewpoint

Elections & Bribery: Geometric Viewpoint

2 New Algorithms for Bribery

- Elections & Bribery: Geometric Viewpoint
- New Algorithms for Bribery
- Modeling Campaigning: Polytope Games (⇒ open problems)

Elections & Bribery: Geometric Viewpoint

• Ancient questions

- Who should govern?
- How to select them?
- What is good for society?
- How to detect and fight manipulation?

Computational Social Choice

• Ancient questions

- Who should govern?
- How to select them?
- What is good for society?
- How to detect and fight manipulation?

• Old fundamental results

- 1743-1794: Marquis de Condorcet
- 1733-1799: Jean-Charles de Borda
- 1832-1898: Charles Lutwidge Dodgson (aka Lewis Carroll)

Computational Social Choice

• Ancient questions

- Who should govern?
- How to select them?
- What is good for society?
- How to detect and fight manipulation?
- Old fundamental results
 - 1743-1794: Marquis de Condorcet
 - 1733-1799: Jean-Charles de Borda
 - 1832-1898: Charles Lutwidge Dodgson (aka Lewis Carroll)

• Recent topic

- Brexit
- Trump
- Facebook

Candidates: \blacktriangle , \blacksquare , and \bigstar . **People:** preference (e.g. $\blacksquare \succ \bigstar \succ \bigstar$), active/latent, bribery costs, etc. (simplify: just preference) **Society:** how many people of which type \Rightarrow **Society graph:**

Candidates: \blacktriangle , \blacksquare , and \bigstar . **People:** preference (e.g. $\blacksquare \succ \bigstar \succ \bigstar$), active/latent, bribery costs, etc. (simplify: just preference)

Society: how many people of which type \Rightarrow **Society graph:**

Society $\mathbf{w} = (21, 10, 10, 21, 42, 42)$ edges \equiv swap distance 1.

Candidates: \blacktriangle , \blacksquare , and \bigstar . **People:** preference (e.g. $\blacksquare \succ \bigstar \succ \bigstar$), active/latent, bribery costs, etc. (simplify: just preference)

Society: how many people of which type \Rightarrow **Society graph:**

Society
$$\mathbf{w} = (21, 10, 10, 21, 42, 42)$$

edges \equiv swap distance 1.

Voting rule: given a society, *who should win?*

- Plurality = most times first
- Condorcet = beats everyone head-to-head

Candidates: \blacktriangle , \blacksquare , and \bigstar . **People:** preference (e.g. $\blacksquare \succ \bigstar \succ \bigstar$), active/latent, bribery costs, etc. (simplify: just preference)

Society: how many people of which type \Rightarrow **Society graph:**

Society
$$\mathbf{w} = (21, 10, 10, 21, 42, 42)$$

edges \equiv swap distance 1.

Voting rule: given a society, *who should win?*

- Plurality = most times first
- Condorcet = beats everyone head-to-head
- Dodgson = least #swaps to Condorcet

Bribing

society $\mathbf{w} = (21, 10, 10, 21, 42, 42)$

Bribing

society $\mathbf{w} = (21, 10, 10, 21, 42, 42)$

Bribery: cheapest way to move voters s.t. ■ wins Plurality? (Assume unit cost per swap.)

society $\mathbf{w} = (21, 10, 10, 21, 42, 42)$ move $\mathbf{m} = (0, \dots, 0, +15, +15, 0, \dots, 0)$ (arc space) change $\mathbf{\Delta} = \mathbf{\Delta}(\mathbf{m}) = (-15, +15, +15, -15, 0, 0)$

Bribery: cheapest way to move voters s.t. ■ wins Plurality? (Assume unit cost per swap.)

$$w' = w + \Delta$$
 with $\Delta = (-15, +15, +15, -15, 0, 0)$
wins: $48 = w(1) + w(6) = w(4) + w(5) < w(2) + w(3) = 50$

Bribery: cheapest way to move voters s.t. ■ wins Plurality? (Assume unit cost per swap.)

w' = w +
$$\Delta$$
 with Δ = (-15, +15, +15, -15, 0, 0)
■ wins: 48 = w(1) + w(6) = w(4) + w(5) < w(2) + w(3) = 50

Bribery: cheapest way to move voters s.t. ■ wins Plurality? (Assume unit cost per swap.)

Robust model: captures many prior manipulation models – full bribery, only shift ■, pay-per-swap, add/delete voters, etc.

w' = w +
$$\Delta$$
 with Δ = (-15, +15, +15, -15, 0, 0)
■ wins: 48 = w(1) + w(6) = w(4) + w(5) < w(2) + w(3) = 50

Bribery: cheapest way to move voters s.t. ■ wins Plurality?
(Assume unit cost per swap.)
Robust model: captures many prior manipulation models – full bribery,

only shift ■, pay-per-swap, add/delete voters, etc.

BTW: Society graph + move + change model is "obvious" but new and very useful! [IJCAI; Faliszewski, Gonen, K., Talmon] and [AAMAS; Knop, K., Mnich]

New Algorithms for Bribery

Before 2017: Bribery in time $f(\#types of people) \cdot \log(\#people)$ for "simple" voting rules (many ad-hoc results; all use Lenstra)

Before 2017: Bribery in time $f(\#types of people) \cdot log(\#people)$ for "simple" voting rules (many ad-hoc results; all use Lenstra), BUT:

- f is double-exponential :(
- cannot handle different voter costs :(
- cannot handle Dodgson's rule :(

Before 2017: Bribery in time $f(\#types of people) \cdot log(\#people)$ for "simple" voting rules (many ad-hoc results; all use Lenstra), BUT:

- f is double-exponential :(
- cannot handle different voter costs :(
- cannot handle Dodgson's rule :(

Challenge #1: Replace Lenstra, make single-exp! **Challenge #2:** Handle different voter costs! (replace #types w/ #candidates)

[2014; Bredereck, Chen, Faliszewski, Guo, Niedermeier, Woeginger]

Before 2017: Bribery in time $f(\#types of people) \cdot log(\#people)$ for "simple" voting rules (many ad-hoc results; all use Lenstra), BUT:

- f is double-exponential :(
- cannot handle different voter costs :(
- cannot handle Dodgson's rule :(

Challenge #1: Replace Lenstra, make single-exp! Challenge #2: Handle different voter costs! (replace #types w/ #candidates)

[2014; Bredereck, Chen, Faliszewski, Guo, Niedermeier, Woeginger]

Solved!

Theorem (STACS, ESA, AAMAS; Knop, K., Mnich)

Bribery in time:

● single-exp f (#candidates) · poly(#types) · log(#people) for "simple" rules,

2 $f(\#types) \cdot poly(\#people)$ for "complex" rules, incl. Dodgson.

Observation: |C| candidates $\Rightarrow |C|!$ voter types.

Observation: |C| candidates $\Rightarrow |C|!$ voter types. Variables, coefficients, etc:

- $w_i = \#$ people of type *i* on input
- $m_{ij} = \#$ people of type *i* moved to type *j*
- $\Delta(\mathbf{m})_i = \sum_j m_{ji} \sum_j m_{ij} = change$ of the move \mathbf{m}
- $\mathbf{w}' = \mathbf{w} + \Delta(\mathbf{m}) =$ new society after bribery

Observation: |C| candidates $\Rightarrow |C|!$ voter types. Variables, coefficients, etc:

- $w_i = \#$ people of type *i* on input
- $m_{ij} = \#$ people of type *i* moved to type *j*
- $\Delta(\mathbf{m})_i = \sum_j m_{ji} \sum_j m_{ij} = change$ of the move \mathbf{m}
- $\mathbf{w}' = \mathbf{w} + \Delta(\mathbf{m}) =$ new society after bribery
- $S_c = \#$ votes obtained by candidate c
- $c_{ij} = \text{cost of moving from type } i \text{ to type } j$

Observation: |C| candidates $\Rightarrow |C|!$ voter types. Variables, coefficients, etc:

•
$$w_i = \#$$
people of type *i* on input
• $m_{ij} = \#$ people of type *i moved* to type *j*
• $\Delta(\mathbf{m})_i = \sum_j m_{ji} - \sum_j m_{ij} = change$ of the move \mathbf{m}
• $\mathbf{w}' = \mathbf{w} + \Delta(\mathbf{m}) =$ new society after bribery
• $S_c = \#$ votes obtained by candidate *c*
• $c_{ij} = \text{cost}$ of moving from type *i* to type *j*
min **cm** minimum cost move
 $\mathbf{w}' = \mathbf{w} + \Delta(\mathbf{m}) \ge \mathbf{0}$ move \mathbf{m} produces a valid society \mathbf{w}'
 $\sum_{i:type \ i \text{ votes for } c} w'_i = S_c \qquad \forall c$ aggregate points

Observation: |C| candidates $\Rightarrow |C|!$ voter types. Variables, coefficients, etc:

•
$$w_i = \#$$
people of type *i* on input
• $m_{ij} = \#$ people of type *i moved* to type *j*
• $\Delta(\mathbf{m})_i = \sum_j m_{ji} - \sum_j m_{ij} = change$ of the move \mathbf{m}
• $\mathbf{w}' = \mathbf{w} + \Delta(\mathbf{m}) =$ new society after bribery
• $S_c = \#$ votes obtained by candidate *c*
• $c_{ij} = \text{cost of moving from type } i$ to type *j*
min **cm**
• $\mathbf{w}' = \mathbf{w} + \Delta(\mathbf{m}) \ge \mathbf{0}$
min **cm**
• $\mathbf{w}' = \mathbf{w} + \Delta(\mathbf{m}) \ge \mathbf{0}$
move \mathbf{m} produces a valid society \mathbf{w}'
 $\sum_{i: type \ i \ votes \ for \ c}$
 $S_{c^*} \ge S_c$ $\forall c \neq c^*$
• c^* wins

 $\mathcal{O}(|\mathcal{C}|!) \text{ variables} \Rightarrow \text{apply Lenstra: } |\mathcal{C}|!^{|\mathcal{C}|!} \langle \mathbf{w} \rangle = 2^{2^{\#\text{candidates}^{\mathcal{O}(1)}}}$ log(#people)

wins

Theorem (STACS, ESA, AAMAS; Knop, K., Mnich)

Bribery in time:

- single-exp f (#candidates) · poly(#types) · log(#people) for "simple" rules,
- 2 $f(\#types) \cdot poly(\#people)$ for "complex" rules, incl. Dodgson.

Proof of (1).

Idea: ILP has *n*-fold structure! Blocks \sim types of people, A block \sim #ppl moving to other type, $(D \cdots D) \sim$ voting rule.

Theorem (STACS, ESA, AAMAS; Knop, K., Mnich)

Bribery in time:

- single-exp f (#candidates) · poly(#types) · log(#people) for "simple" rules,
- 2 $f(\#types) \cdot poly(\#people)$ for "complex" rules, incl. Dodgson.

Proof of (1).

Idea: ILP has *n*-fold structure! Blocks \sim types of people, A block \sim #ppl moving to other type, $(D \cdots D) \sim$ voting rule. Adapt/extend algo [Hemmecke, Onn, Romanchuk '13] "simple rules": *few* constraints, *small* $||D||_{\infty}$.

Theorem (STACS, ESA, AAMAS; Knop, K., Mnich)

Bribery in time:

single-exp f(#candidates) · poly(#types) · log(#people) for "simple" rules,

2 $f(\#types) \cdot poly(\#people)$ for "complex" rules, incl. Dodgson.

Proof of (2).

Want: formula $\Phi_{Dodgson} \equiv$ " \bigstar is Dodgson winner" \equiv least #swaps to Condorcet

Theorem (STACS, ESA, AAMAS; Knop, K., Mnich) Bribery in time:

- single-exp f(#candidates) · poly(#types) · log(#people) for "simple" rules,
- I (#types) · poly(#people) for "complex" rules, incl. Dodgson.

Proof of (2).

Want: formula $\Phi_{Dodgson} \equiv$ " \bigstar is Dodgson winner" \equiv least #swaps to Condorcet

 $\Phi_{\text{Dodgson}} \equiv \exists k \in \mathbb{N} : \begin{cases} \exists \text{ sequence of } k \text{ swaps } \rightsquigarrow \bigstar \text{ is Condorcet winner AND} \\ \forall c \neq \bigstar \text{ at least } k+1 \text{ swaps } \rightsquigarrow c \text{ is Condorcet winner.} \end{cases}$

Theorem (STACS, ESA, AAMAS; Knop, K., Mnich)

Bribery in time:

- single-exp f(#candidates) · poly(#types) · log(#people) for "simple" rules,
- 2 $f(\#types) \cdot poly(\#people)$ for "complex" rules, incl. Dodgson.

Proof of (2).

Want: formula $\Phi_{Dodgson} \equiv$ " \bigstar is Dodgson winner" \equiv least #swaps to Condorcet

 $\Phi_{\text{Dodgson}} \equiv \exists k \in \mathbb{N} : \begin{cases} \exists \text{ sequence of } k \text{ swaps } \rightsquigarrow \bigstar \text{ is Condorcet winner AND} \\ \forall c \neq \bigstar \text{ at least } k+1 \text{ swaps } \rightsquigarrow c \text{ is Condorcet winner.} \end{cases}$

Encode Φ_{Dodgson} in terms of society / move / change vectors \Rightarrow decide $\exists \mathbf{x} \forall \mathbf{y} \exists \mathbf{z} : \Psi(\mathbf{x}, \mathbf{y}, \mathbf{z})$ sentence \Rightarrow [much modeling work] \Rightarrow decide $\forall \mathbf{x} \exists \mathbf{y} : A(\mathbf{x}, \mathbf{y}) \leq \mathbf{b}$ sentence

Theorem (STACS, ESA, AAMAS; Knop, K., Mnich)

Bribery in time:

- single-exp f(#candidates) · poly(#types) · log(#people) for "simple" rules,
- 2 $f(\#types) \cdot poly(\#people)$ for "complex" rules, incl. Dodgson.

Proof of (2).

Want: formula $\Phi_{Dodgson} \equiv$ " \bigstar is Dodgson winner" \equiv least #swaps to Condorcet

 $\Phi_{\mathsf{Dodgson}} \equiv \exists k \in \mathbb{N} : \begin{cases} \exists \text{ sequence of } k \text{ swaps } \rightsquigarrow \bigstar \text{ is Condorcet winner AND} \\ \forall c \neq \bigstar \text{ at least } k+1 \text{ swaps } \rightsquigarrow c \text{ is Condorcet winner.} \end{cases}$

Encode Φ_{Dodgson} in terms of society / move / change vectors \Rightarrow decide $\exists \mathbf{x} \forall \mathbf{y} \exists \mathbf{z} : \Psi(\mathbf{x}, \mathbf{y}, \mathbf{z})$ sentence \Rightarrow [much modeling work] \Rightarrow decide $\forall \mathbf{x} \exists \mathbf{y} : A(\mathbf{x}, \mathbf{y}) \leq \mathbf{b}$ sentence **Thm [Eisenbrand, Shmonin '08]:** Can decide $\forall \mathbf{b} \in Q \cap \mathbb{Z}^m \exists \mathbf{x} \in \mathbb{Z}^n : A\mathbf{x} \leq \mathbf{b}$ in time $f(n, m) \cdot \text{poly}(||A, \mathbf{b}||_{\infty})$ Modeling Campaigning: Polytope Games

So far: bribe, then vote.

What about more rounds?

So far: bribe, then vote. *k*-round Campaigning Game: Given:

- Society \mathbf{w}^0 ,
- cost vectors $\mathbf{c}^1, \ldots, \mathbf{c}^{2k}$,
- round budgets $b^1,\ldots,b^{2k}\in\mathbb{N}$,
- voting rule \mathcal{R} ,
- players P and Q.

What about more rounds?

So far: bribe, then vote. *k*-round Campaigning Game: **Given**:

- Society \mathbf{w}^0 ,
- cost vectors $\mathbf{c}^1, \ldots, \mathbf{c}^{2k}$,
- round budgets $b^1,\ldots,b^{2k}\in\mathbb{N}$,
- voting rule \mathcal{R} ,
- players P and Q.

What about more rounds?

Play: in each round $i \in \{1, \ldots, k\}$,

So far: bribe, then vote. *k*-round Campaigning Game: **Given**:

- Society \mathbf{w}^0 ,
- cost vectors $\mathbf{c}^1, \ldots, \mathbf{c}^{2k}$,
- round budgets $b^1,\ldots,b^{2k}\in\mathbb{N}$,
- voting rule \mathcal{R} ,
- players P and Q.

What about more rounds?

Play: in each round $i \in \{1, \ldots, k\}$,

• *P* picks a move \mathbf{m}^{2i-1} w/ cost $\mathbf{c}^{2i-1}\mathbf{m}^{2i-1} \leq b^{2i-1}$ valid for society \mathbf{w}^{2i-2}

•
$$\Rightarrow$$
 new society
 $\mathbf{w}^{2i-1} := \mathbf{w}^{2i-2} + \Delta(\mathbf{m}^{2i-1})$

So far: bribe, then vote. *k*-round Campaigning Game: **Given**:

- Society \mathbf{w}^0 ,
- cost vectors $\mathbf{c}^1, \ldots, \mathbf{c}^{2k}$,
- round budgets $b^1,\ldots,b^{2k}\in\mathbb{N}$,
- voting rule \mathcal{R} ,
- players P and Q.

What about more rounds?

Play: in each round $i \in \{1, \ldots, k\}$,

- *P* picks a move \mathbf{m}^{2i-1} w/ cost $\mathbf{c}^{2i-1}\mathbf{m}^{2i-1} \leq b^{2i-1}$ valid for society \mathbf{w}^{2i-2}
- \Rightarrow new society $\mathbf{w}^{2i-1} := \mathbf{w}^{2i-2} + \Delta(\mathbf{m}^{2i-1})$
- Q reacts by picking \mathbf{m}^{2i} with cost $\mathbf{c}^{2i}\mathbf{m}^{2i} \leq b^{2i}$ valid for society \mathbf{w}^{2i-1}

$$ullet$$
 \Rightarrow \mathbf{w}^{2i} := $\mathbf{w}^{2i-1} + \Delta(\mathbf{m}^{2i-1})$

So far: bribe, then vote. *k*-round Campaigning Game: **Given**:

- Society \mathbf{w}^0 ,
- cost vectors $\mathbf{c}^1, \ldots, \mathbf{c}^{2k}$,
- round budgets $b^1,\ldots,b^{2k}\in\mathbb{N}$,
- voting rule \mathcal{R} ,
- players P and Q.

What about more rounds?

Play: in each round $i \in \{1, \ldots, k\}$,

- *P* picks a move \mathbf{m}^{2i-1} w/ cost $\mathbf{c}^{2i-1}\mathbf{m}^{2i-1} \leq b^{2i-1}$ valid for society \mathbf{w}^{2i-2}
- \Rightarrow new society $\mathbf{w}^{2i-1} := \mathbf{w}^{2i-2} + \Delta(\mathbf{m}^{2i-1})$
- Q reacts by picking \mathbf{m}^{2i} with cost $\mathbf{c}^{2i}\mathbf{m}^{2i} \leq b^{2i}$ valid for society \mathbf{w}^{2i-1}

$$\bullet \Rightarrow \mathbf{w}^{2i} := \mathbf{w}^{2i-1} + \Delta(\mathbf{m}^{2i-1})$$

P wins if \bigstar wins in society \mathbf{w}^{2k} under rule \mathcal{R} . **Decide:** *P* has winning strategy?

So far: bribe, then vote. *k*-round Campaigning Game: **Given**:

- Society \mathbf{w}^0 ,
- cost vectors $\mathbf{c}^1, \ldots, \mathbf{c}^{2k}$,
- round budgets $b^1,\ldots,b^{2k}\in\mathbb{N}$,
- voting rule \mathcal{R} ,
- players P and Q.

 $\begin{aligned} k &= 1 \equiv \exists \mathbf{x} \forall \mathbf{y} : A(\mathbf{x}, \mathbf{y}) \leq \mathbf{b} \Rightarrow \\ \text{solvable in } f(\# \text{types}) \operatorname{poly}(\# \text{people}) \end{aligned}$

What about more rounds?

Play: in each round $i \in \{1, \ldots, k\}$,

- *P* picks a move \mathbf{m}^{2i-1} w/ cost $\mathbf{c}^{2i-1}\mathbf{m}^{2i-1} \leq b^{2i-1}$ valid for society \mathbf{w}^{2i-2}
- \Rightarrow new society $\mathbf{w}^{2i-1} := \mathbf{w}^{2i-2} + \Delta(\mathbf{m}^{2i-1})$
- Q reacts by picking \mathbf{m}^{2i} with cost $\mathbf{c}^{2i}\mathbf{m}^{2i} \leq b^{2i}$ valid for society \mathbf{w}^{2i-1}

$$\bullet \Rightarrow \mathbf{w}^{2i} := \mathbf{w}^{2i-1} + \Delta(\mathbf{m}^{2i-1})$$

P wins if \bigstar wins in society \mathbf{w}^{2k} under rule \mathcal{R} .

Decide: *P* has winning strategy?

So far: bribe. then vote. *k*-round Campaigning Game: Given:

- Society **w**⁰.
- cost vectors $\mathbf{c}^1, \ldots, \mathbf{c}^{2k}$.
- round budgets $b^1, \ldots, b^{2k} \in \mathbb{N}$.
- voting rule \mathcal{R} ,
- players P and Q.

 $k = 1 \equiv \exists \mathbf{x} \forall \mathbf{y} : A(\mathbf{x}, \mathbf{y}) < \mathbf{b} \Rightarrow$ solvable in f(#types) poly(#people) $k > 2 \equiv \exists \mathbf{x}^1 \cdots \forall \mathbf{y}^k : A(\mathbf{x}^1, \dots, \mathbf{y}^k) < \mathbf{b}$ What about more rounds?

Play: in each round $i \in \{1, \ldots, k\}$,

- *P* picks a move \mathbf{m}^{2i-1} w/ cost $c^{2i-1}m^{2i-1} < b^{2i-1}$ valid for society \mathbf{w}^{2i-2}
- \Rightarrow new society $\mathbf{w}^{2i-1} := \mathbf{w}^{2i-2} + \Delta(\mathbf{m}^{2i-1})$
- Q reacts by picking \mathbf{m}^{2i} with cost $\mathbf{c}^{2i}\mathbf{m}^{2i} < b^{2i}$ valid for society \mathbf{w}^{2i-1}

$$\bullet \Rightarrow \mathbf{w}^{2i} := \mathbf{w}^{2i-1} + \Delta(\mathbf{m}^{2i-1})$$

P wins if \bigstar wins in society \mathbf{w}^{2k} under rule \mathcal{R} .

Decide: *P* has winning strategy?

So far: bribe, then vote. *k*-round Campaigning Game: **Given**:

- Society \mathbf{w}^0 ,
- cost vectors $\mathbf{c}^1, \ldots, \mathbf{c}^{2k}$,
- round budgets $b^1,\ldots,b^{2k}\in\mathbb{N}$,
- voting rule \mathcal{R} ,
- players P and Q.

 $k = 1 \equiv \exists \mathbf{x} \forall \mathbf{y} : A(\mathbf{x}, \mathbf{y}) \leq \mathbf{b} \Rightarrow$ solvable in f(# types) poly(# people) $k \geq 2 \equiv \exists \mathbf{x}^1 \cdots \forall \mathbf{y}^k : A(\mathbf{x}^1, \dots, \mathbf{y}^k) \leq \mathbf{b}$ BUT

Theorem (Nguyen, Pak '17)

 $\forall \exists \forall$ -ILP is NP-c in dimension $\geq 6!$

What about more rounds?

Play: in each round $i \in \{1, \ldots, k\}$,

- *P* picks a move \mathbf{m}^{2i-1} w/ cost $\mathbf{c}^{2i-1}\mathbf{m}^{2i-1} \leq b^{2i-1}$ valid for society \mathbf{w}^{2i-2}
- \Rightarrow new society $\mathbf{w}^{2i-1} := \mathbf{w}^{2i-2} + \Delta(\mathbf{m}^{2i-1})$
- Q reacts by picking \mathbf{m}^{2i} with cost $\mathbf{c}^{2i}\mathbf{m}^{2i} \leq b^{2i}$ valid for society \mathbf{w}^{2i-1}

$$\bullet \Rightarrow \mathbf{w}^{2i} := \mathbf{w}^{2i-1} + \Delta(\mathbf{m}^{2i-1})$$

P wins if \bigstar wins in society \mathbf{w}^{2k} under rule \mathcal{R} . **Decide:** *P* has winning strategy?

k-round Polytope Game: Given:

- Point $\mathbf{x}^0 \in \mathbb{R}^n$,
- polytopes $P_1, Q_1, \ldots, P_k, Q_k \subseteq \mathbb{R}^n$,
- target polytope $W \subseteq \mathbb{R}^n$,
- players P and Q.

k-round Polytope Game: Given:

- Point $\mathbf{x}^0 \in \mathbb{R}^n$,
- polytopes $P_1, Q_1, \ldots, P_k, Q_k \subseteq \mathbb{R}^n$,
- target polytope $W \subseteq \mathbb{R}^n$,
- players P and Q.

Play: in each round $i \in \{1, \ldots, k\}$,

- P picks a move $\mathbf{p}^i \in P_i$
- $\bullet \Rightarrow \mathbf{x}^{2i-1} := \mathbf{x}^{2i-2} + \mathbf{p}^i$
- Q reacts by picking $\mathbf{q}^i \in Q_i$
- $\bullet \Rightarrow \mathbf{x}^{2i} := \mathbf{x}^{2i-1} + \mathbf{q}^i$

P wins if $\mathbf{x}^{2k} \in W$ **Decide:** *P* has winning strategy?

k-round Polytope Game: Given:

- Point $\mathbf{x}^0 \in \mathbb{R}^n$,
- polytopes $P_1, Q_1, \ldots, P_k, Q_k \subseteq \mathbb{R}^n$,
- target polytope $W \subseteq \mathbb{R}^n$,
- players P and Q.

Play: in each round $i \in \{1, \ldots, k\}$,

- P picks a move $\mathbf{p}^i \in P_i$
- $\bullet \Rightarrow \mathbf{x}^{2i-1} := \mathbf{x}^{2i-2} + \mathbf{p}^i$
- Q reacts by picking $\mathbf{q}^i \in Q_i$

$$\bullet \Rightarrow \mathbf{x}^{2i} := \mathbf{x}^{2i-1} + \mathbf{q}^i$$

P wins if $x^{2k} \in W$ **Decide:** *P* has winning strategy?

Positions in W "resistent" to moves in Q_k :

$$W' = \{ \mathbf{w} \mid \forall \mathbf{q} \in Q_k : \mathbf{w} + \mathbf{q} \in W \} = W \sim Q_k \Leftarrow Minkowski difference!$$

k-round Polytope Game: Given:

- Point $\mathbf{x}^0 \in \mathbb{R}^n$,
- polytopes $P_1, Q_1, \ldots, P_k, Q_k \subseteq \mathbb{R}^n$,
- target polytope $W \subseteq \mathbb{R}^n$,
- players P and Q.

Play: in each round $i \in \{1, \ldots, k\}$,

• P picks a move $\mathbf{p}^i \in P_i$

$$\bullet \Rightarrow \mathbf{x}^{2i-1} := \mathbf{x}^{2i-2} + \mathbf{p}^i$$

• Q reacts by picking $\mathbf{q}^i \in Q_i$

•
$$\Rightarrow \mathbf{x}^{2i} := \mathbf{x}^{2i-1} + \mathbf{q}^i$$

P wins if $x^{2k} \in W$ **Decide:** *P* has winning strategy?

Positions in W "resistent" to moves in Q_k : $W' = \{ \mathbf{w} \mid \forall \mathbf{q} \in Q_k : \mathbf{w} + \mathbf{q} \in W \} = W \sim Q_k \Leftarrow \text{Minkowski difference!}$ Positions in W' "reachable" by moves in P_k :

 $W'' = {\mathbf{w} + \mathbf{p} \mid \mathbf{p} \in P_k, \mathbf{w} \in W'} = W + P_k \Leftarrow \text{Minkowski sum!}$

k-round Polytope Game: Given:

- Point $\mathbf{x}^0 \in \mathbb{R}^n$,
- polytopes $P_1, Q_1, \ldots, P_k, Q_k \subseteq \mathbb{R}^n$,
- target polytope $W \subseteq \mathbb{R}^n$,
- players P and Q.

Play: in each round $i \in \{1, \ldots, k\}$,

• P picks a move $\mathbf{p}^i \in P_i$

$$\bullet \Rightarrow \mathbf{x}^{2i-1} := \mathbf{x}^{2i-2} + \mathbf{p}^i$$

• Q reacts by picking $\mathbf{q}^i \in Q_i$

•
$$\Rightarrow \mathbf{x}^{2i} := \mathbf{x}^{2i-1} + \mathbf{q}^i$$

P wins if $x^{2k} \in W$ Decide: *P* has winning strategy?

Positions in W "resistent" to moves in Q_k : $W' = \{\mathbf{w} \mid \forall \mathbf{q} \in Q_k : \mathbf{w} + \mathbf{q} \in W\} = W \sim Q_k \Leftarrow \text{Minkowski difference!}$ Positions in W' "reachable" by moves in P_k : $W'' = \{\mathbf{w} + \mathbf{p} \mid \mathbf{p} \in P_k, \mathbf{w} \in W'\} = W + P_k \Leftarrow \text{Minkowski sum!}$ origin of B $B = A \ominus B$ $S = A \oplus B$

Positions in W "resistent" to moves in Q_k : $W' = \{ \mathbf{w} \mid \forall \mathbf{q} \in Q_k : \mathbf{w} + \mathbf{q} \in W \} = W \sim Q_k \Leftarrow \text{Minkowski difference!}$ Positions in W' "reachable" by moves in P_k : $W'' = \{ \mathbf{w} + \mathbf{p} \mid \mathbf{p} \in P_k, \mathbf{w} \in W' \} = W + P_k \Leftarrow \text{Minkowski sum!}$

"Theorem"

Solve in time $f(n, d, k) \cdot \langle \sum_i ||P_i, Q_i||_{\infty} \rangle w/d = \max_i \# ineqs \ describing \ P_i, Q_i$.

Proof.

Repeatedly apply Minkowski difference and sum (we always stay convex).

k-round Integer Polytope Game: Given:

- Point $\mathbf{x}^0 \in \mathbb{Z}^n$,
- polytopes $P_1, Q_1, \ldots, P_k, Q_k \subseteq \mathbb{R}^n$,
- target polytope $W \subseteq \mathbb{R}^n$,
- players P and Q.

Play: in each round $i \in \{1, \ldots, k\}$,

- *P* picks a move $\mathbf{p}^i \in P_i \cap \mathbb{Z}^n$
- $\bullet \Rightarrow \mathbf{x}^{2i-1} := \mathbf{x}^{2i-2} + \mathbf{p}^i$
- Q reacts by picking $\mathbf{q}^i \in Q_i \cap \mathbb{Z}^n$

$$\bullet \Rightarrow \mathbf{x}^{2i} := \mathbf{x}^{2i-1} + \mathbf{q}^i$$

P wins if $\mathbf{x}^{2k} \in W$ **Decide:** *P* has winning strategy?

k-round Integer Polytope Game: Given:

- Point $\mathbf{x}^0 \in \mathbb{Z}^n$,
- polytopes $P_1, Q_1, \ldots, P_k, Q_k \subseteq \mathbb{R}^n$,
- target polytope $W \subseteq \mathbb{R}^n$,
- players P and Q.

Play: in each round $i \in \{1, \ldots, k\}$,

• *P* picks a move $\mathbf{p}^i \in P_i \cap \mathbb{Z}^n$

•
$$\Rightarrow \mathbf{x}^{2i-1} := \mathbf{x}^{2i-2} + \mathbf{p}^i$$

• Q reacts by picking $\mathbf{q}^i \in Q_i \cap \mathbb{Z}^n$

$$\bullet \Rightarrow \mathbf{x}^{2i} := \mathbf{x}^{2i-1} + \mathbf{q}^i$$

P wins if $\mathbf{x}^{2k} \in W$ **Decide:** *P* has winning strategy?

Gets more complicated: even if W', P_k are integer points of a convex set, $W' + P_k$ is not!

Still: given ILP(W) and $ILP(Q_k)$, can define $ILP(W') = ILP(W) \sim ILP(Q_k)$, and, can define $ILP(W'') = ILP(W') + ILP(P_k)$.

Gets more complicated: even if W', P_k are integer points of a convex set, $W' + P_k$ is not!

Still: given ILP(W) and $ILP(Q_k)$, can define $ILP(W') = ILP(W) \sim ILP(Q_k)$, and, can define $ILP(W'') = ILP(W') + ILP(P_k)$.

"Theorem"

Solve in time $f(k, n, d \max_i coeff(P_i, Q_i)) \cdot \langle \sum_i rhs(P_i, Q_i) \rangle$.

Proof.

Repeatedly apply Minkowski difference and sum (but now the result is possibly non-convex BUT is a projection of a convex set) + Integer hull bounds + Lenstra.

k-round Nonnegative Integer Polytope Game: Given: Play: in each ro

- Point $\mathbf{x}^0 \in \mathbb{N}^n$,
- polytopes $P_1, Q_1, \ldots, P_k, Q_k \subseteq \mathbb{R}^n$,
- target polytope $W \subseteq \mathbb{R}^n$,
- players P and Q.

Play: in each round $i \in \{1, \ldots, k\}$,

• *P* picks a move $\mathbf{p}^i \in P_i \cap \mathbb{Z}^n$

$$\bullet \Rightarrow \mathbf{x}^{2i-1} := \mathbf{x}^{2i-2} + \mathbf{p}^i \ge \mathbf{0}$$

• Q reacts by picking $\mathbf{q}^i \in Q_i \cap \mathbb{Z}^n$

$$\bullet \Rightarrow \mathbf{x}^{2i} := \mathbf{x}^{2i-1} + \mathbf{q}^i \ge \mathbf{0}$$

P wins if $\mathbf{x}^{2k} \in W$ **Decide:** *P* has winning strategy?

 $W\sim_{\geq 0} Q_k$ not convex anymore, even without integrality!

 $W\sim_{\geq 0} Q_k$ not convex anymore, even without integrality!

 $W\sim_{\geq 0} Q_k$ not convex anymore, even without integrality!

