
Elections, Bribery, and Integer Programming

Martin Koutecký

Optimization and Discrete Geometry: Theory and Practice,
Tel Aviv, April 25th, 2018

Outline

1 Elections & Bribery: Geometric Viewpoint

2 New Algorithms for Bribery

3 Modeling Campaigning: Polytope Games (⇒ open problems)

Outline

1 Elections & Bribery: Geometric Viewpoint

2 New Algorithms for Bribery

3 Modeling Campaigning: Polytope Games (⇒ open problems)

Outline

1 Elections & Bribery: Geometric Viewpoint

2 New Algorithms for Bribery

3 Modeling Campaigning: Polytope Games (⇒ open problems)

Elections & Bribery:
Geometric Viewpoint

Computational Social Choice

Ancient questions

Who should govern?
How to select them?
What is good for society?
How to detect and fight manipulation?

Old fundamental results

1743-1794: Marquis de Condorcet
1733-1799: Jean-Charles de Borda
1832-1898: Charles Lutwidge Dodgson (aka Lewis Carroll)

Recent topic

Brexit
Trump
Facebook

Computational Social Choice

Ancient questions

Who should govern?
How to select them?
What is good for society?
How to detect and fight manipulation?

Old fundamental results

1743-1794: Marquis de Condorcet
1733-1799: Jean-Charles de Borda
1832-1898: Charles Lutwidge Dodgson (aka Lewis Carroll)

Recent topic

Brexit
Trump
Facebook

Computational Social Choice

Ancient questions

Who should govern?
How to select them?
What is good for society?
How to detect and fight manipulation?

Old fundamental results

1743-1794: Marquis de Condorcet
1733-1799: Jean-Charles de Borda
1832-1898: Charles Lutwidge Dodgson (aka Lewis Carroll)

Recent topic

Brexit
Trump
Facebook

Voting

Candidates: N, �, and F.
People: preference (e.g. � � N �F), active/latent, bribery costs, etc.
(simplify: just preference)

Society: how many people of which type ⇒ Society graph:

N � � � F

type 1; w(1) = 21
� � N � F

type 2; w(2) = 10

� � F � N

type 3; w(3) = 10

F � � � N

type 4; w(4) = 21

F � N � �

type 5; w(5) = 42

N � F � �

type 6; w(6) = 42

Society w = (21, 10, 10, 21, 42, 42)
edges ≡ swap distance 1.

Voting rule: given a society,
who should win?

Plurality = most times
first

Condorcet = beats
everyone head-to-head

Dodgson = least
#swaps to Condorcet

Voting

Candidates: N, �, and F.
People: preference (e.g. � � N �F), active/latent, bribery costs, etc.
(simplify: just preference)

Society: how many people of which type ⇒ Society graph:

N � � � F

type 1; w(1) = 21
� � N � F

type 2; w(2) = 10

� � F � N

type 3; w(3) = 10

F � � � N

type 4; w(4) = 21

F � N � �

type 5; w(5) = 42

N � F � �

type 6; w(6) = 42

Society w = (21, 10, 10, 21, 42, 42)
edges ≡ swap distance 1.

Voting rule: given a society,
who should win?

Plurality = most times
first

Condorcet = beats
everyone head-to-head

Dodgson = least
#swaps to Condorcet

Voting

Candidates: N, �, and F.
People: preference (e.g. � � N �F), active/latent, bribery costs, etc.
(simplify: just preference)

Society: how many people of which type ⇒ Society graph:

N � � � F

type 1; w(1) = 21
� � N � F

type 2; w(2) = 10

� � F � N

type 3; w(3) = 10

F � � � N

type 4; w(4) = 21

F � N � �

type 5; w(5) = 42

N � F � �

type 6; w(6) = 42

Society w = (21, 10, 10, 21, 42, 42)
edges ≡ swap distance 1.

Voting rule: given a society,
who should win?

Plurality = most times
first

Condorcet = beats
everyone head-to-head

Dodgson = least
#swaps to Condorcet

Voting

Candidates: N, �, and F.
People: preference (e.g. � � N �F), active/latent, bribery costs, etc.
(simplify: just preference)

Society: how many people of which type ⇒ Society graph:

N � � � F

type 1; w(1) = 21
� � N � F

type 2; w(2) = 10

� � F � N

type 3; w(3) = 10

F � � � N

type 4; w(4) = 21

F � N � �

type 5; w(5) = 42

N � F � �

type 6; w(6) = 42

Society w = (21, 10, 10, 21, 42, 42)
edges ≡ swap distance 1.

Voting rule: given a society,
who should win?

Plurality = most times
first

Condorcet = beats
everyone head-to-head

Dodgson = least
#swaps to Condorcet

Bribing

N � � � F

type 1; w(1) = 21
� � N � F

type 2; w(2) = 10

� � F � N

type 3; w(3) = 10

F � � � N

type 4; w(4) = 21

F � N � �

type 5; w(5) = 42

N � F � �

type 6; w(6) = 42

society w = (21, 10, 10, 21, 42, 42)

Bribery: cheapest way to move voters s.t. � wins Plurality?
(Assume unit cost per swap.)

Robust model: captures many prior manipulation models – full bribery,
only shift �, pay-per-swap, add/delete voters, etc.

BTW: Society graph + move + change model is “obvious” but new and very
useful! [IJCAI; Faliszewski, Gonen, K., Talmon] and [AAMAS; Knop, K., Mnich]

Bribing

N � � � F

type 1; w(1) = 21
� � N � F

type 2; w(2) = 10

� � F � N

type 3; w(3) = 10

F � � � N

type 4; w(4) = 21

F � N � �

type 5; w(5) = 42

N � F � �

type 6; w(6) = 42

society w = (21, 10, 10, 21, 42, 42)

Bribery: cheapest way to move voters s.t. � wins Plurality?
(Assume unit cost per swap.)

Robust model: captures many prior manipulation models – full bribery,
only shift �, pay-per-swap, add/delete voters, etc.

BTW: Society graph + move + change model is “obvious” but new and very
useful! [IJCAI; Faliszewski, Gonen, K., Talmon] and [AAMAS; Knop, K., Mnich]

Bribing

N � � � F

w ′(1) = 21−15
� � N � F

w ′(2) = 10+15

� � F � N

w ′(3) = 10+15

F � � � N

w ′(4) = 21−15

F � N � �

w ′(5) = 42

N � F � �

w ′(6) = 42

15 15

society w = (21, 10, 10, 21, 42, 42)
move m = (0, . . . , 0,+15,+15, 0, . . . , 0) (arc space)
change ∆ = ∆(m) = (−15,+15,+15,−15, 0, 0)

Bribery: cheapest way to move voters s.t. � wins Plurality?
(Assume unit cost per swap.)

Robust model: captures many prior manipulation models – full bribery,
only shift �, pay-per-swap, add/delete voters, etc.

BTW: Society graph + move + change model is “obvious” but new and very
useful! [IJCAI; Faliszewski, Gonen, K., Talmon] and [AAMAS; Knop, K., Mnich]

Bribing

N � � � F

w ′(1) = 6
� � N � F

w ′(2) = 25

� � F � N

w ′(3) = 25

F � � � N

w ′(4) = 6

F � N � �

w ′(5) = 42

N � F � �

w ′(6) = 42

w′ = w + ∆ with ∆ = (−15,+15,+15,−15, 0, 0)
� wins: 48 = w(1) + w(6) = w(4) + w(5) < w(2) + w(3) = 50

Bribery: cheapest way to move voters s.t. � wins Plurality?
(Assume unit cost per swap.)

Robust model: captures many prior manipulation models – full bribery,
only shift �, pay-per-swap, add/delete voters, etc.

BTW: Society graph + move + change model is “obvious” but new and very
useful! [IJCAI; Faliszewski, Gonen, K., Talmon] and [AAMAS; Knop, K., Mnich]

Bribing

N � � � F

w ′(1) = 6
� � N � F

w ′(2) = 25

� � F � N

w ′(3) = 25

F � � � N

w ′(4) = 6

F � N � �

w ′(5) = 42

N � F � �

w ′(6) = 42

w′ = w + ∆ with ∆ = (−15,+15,+15,−15, 0, 0)
� wins: 48 = w(1) + w(6) = w(4) + w(5) < w(2) + w(3) = 50

Bribery: cheapest way to move voters s.t. � wins Plurality?
(Assume unit cost per swap.)

Robust model: captures many prior manipulation models – full bribery,
only shift �, pay-per-swap, add/delete voters, etc.

BTW: Society graph + move + change model is “obvious” but new and very
useful! [IJCAI; Faliszewski, Gonen, K., Talmon] and [AAMAS; Knop, K., Mnich]

Bribing

N � � � F

w ′(1) = 6
� � N � F

w ′(2) = 25

� � F � N

w ′(3) = 25

F � � � N

w ′(4) = 6

F � N � �

w ′(5) = 42

N � F � �

w ′(6) = 42

w′ = w + ∆ with ∆ = (−15,+15,+15,−15, 0, 0)
� wins: 48 = w(1) + w(6) = w(4) + w(5) < w(2) + w(3) = 50

Bribery: cheapest way to move voters s.t. � wins Plurality?
(Assume unit cost per swap.)

Robust model: captures many prior manipulation models – full bribery,
only shift �, pay-per-swap, add/delete voters, etc.

BTW: Society graph + move + change model is “obvious” but new and very
useful! [IJCAI; Faliszewski, Gonen, K., Talmon] and [AAMAS; Knop, K., Mnich]

New Algorithms
for Bribery

Complexity of Bribery

Before 2017: Bribery in time f (#types of people) · log(#people) for
“simple” voting rules (many ad-hoc results; all use Lenstra)

, BUT:

f is double-exponential :(

cannot handle different voter costs :(

cannot handle Dodgson’s rule :(

Challenge #1: Replace Lenstra, make single-exp!
Challenge #2: Handle different voter costs! (replace

#types w/ #candidates)

[2014; Bredereck, Chen, Faliszewski, Guo, Niedermeier, Woeginger]

Solved!

Theorem (STACS, ESA, AAMAS; Knop, K., Mnich)

Bribery in time:

1 single-exp f (#candidates) · poly(#types) · log(#people) for “simple” rules,

2 f (#types) · poly(#people) for “complex” rules, incl. Dodgson.

Complexity of Bribery

Before 2017: Bribery in time f (#types of people) · log(#people) for
“simple” voting rules (many ad-hoc results; all use Lenstra), BUT:

f is double-exponential :(

cannot handle different voter costs :(

cannot handle Dodgson’s rule :(

Challenge #1: Replace Lenstra, make single-exp!
Challenge #2: Handle different voter costs! (replace

#types w/ #candidates)

[2014; Bredereck, Chen, Faliszewski, Guo, Niedermeier, Woeginger]

Solved!

Theorem (STACS, ESA, AAMAS; Knop, K., Mnich)

Bribery in time:

1 single-exp f (#candidates) · poly(#types) · log(#people) for “simple” rules,

2 f (#types) · poly(#people) for “complex” rules, incl. Dodgson.

Complexity of Bribery

Before 2017: Bribery in time f (#types of people) · log(#people) for
“simple” voting rules (many ad-hoc results; all use Lenstra), BUT:

f is double-exponential :(

cannot handle different voter costs :(

cannot handle Dodgson’s rule :(

Challenge #1: Replace Lenstra, make single-exp!
Challenge #2: Handle different voter costs! (replace

#types w/ #candidates)

[2014; Bredereck, Chen, Faliszewski, Guo, Niedermeier, Woeginger]

Solved!

Theorem (STACS, ESA, AAMAS; Knop, K., Mnich)

Bribery in time:

1 single-exp f (#candidates) · poly(#types) · log(#people) for “simple” rules,

2 f (#types) · poly(#people) for “complex” rules, incl. Dodgson.

Complexity of Bribery

Before 2017: Bribery in time f (#types of people) · log(#people) for
“simple” voting rules (many ad-hoc results; all use Lenstra), BUT:

f is double-exponential :(

cannot handle different voter costs :(

cannot handle Dodgson’s rule :(

Challenge #1: Replace Lenstra, make single-exp!
Challenge #2: Handle different voter costs! (replace

#types w/ #candidates)

[2014; Bredereck, Chen, Faliszewski, Guo, Niedermeier, Woeginger]

Solved!

Theorem (STACS, ESA, AAMAS; Knop, K., Mnich)

Bribery in time:

1 single-exp f (#candidates) · poly(#types) · log(#people) for “simple” rules,

2 f (#types) · poly(#people) for “complex” rules, incl. Dodgson.

Previous approach: Lenstra

Observation: |C | candidates ⇒ |C |! voter types.

Variables, coefficients, etc:

wi = #people of type i on input

mij = #people of type i moved to type j

∆(m)i =
∑

j mji −
∑

j mij = change of the move m

w′ = w + ∆(m) = new society after bribery

Sc = #votes obtained by candidate c

cij = cost of moving from type i to type j

min cm minimum cost move

w′ = w + ∆(m) ≥ 0 move m produces a valid society w′∑
i :type i votes for c

w ′i = Sc ∀c aggregate points

Sc? ≥ Sc ∀c 6= c? c? wins

O(|C |!) variables ⇒ apply Lenstra: |C |!|C |!〈w〉 = 22#candidatesO(1)

log(#people)

Previous approach: Lenstra

Observation: |C | candidates ⇒ |C |! voter types. Variables, coefficients, etc:

wi = #people of type i on input

mij = #people of type i moved to type j

∆(m)i =
∑

j mji −
∑

j mij = change of the move m

w′ = w + ∆(m) = new society after bribery

Sc = #votes obtained by candidate c

cij = cost of moving from type i to type j

min cm minimum cost move

w′ = w + ∆(m) ≥ 0 move m produces a valid society w′∑
i :type i votes for c

w ′i = Sc ∀c aggregate points

Sc? ≥ Sc ∀c 6= c? c? wins

O(|C |!) variables ⇒ apply Lenstra: |C |!|C |!〈w〉 = 22#candidatesO(1)

log(#people)

Previous approach: Lenstra

Observation: |C | candidates ⇒ |C |! voter types. Variables, coefficients, etc:

wi = #people of type i on input

mij = #people of type i moved to type j

∆(m)i =
∑

j mji −
∑

j mij = change of the move m

w′ = w + ∆(m) = new society after bribery

Sc = #votes obtained by candidate c

cij = cost of moving from type i to type j

min cm minimum cost move

w′ = w + ∆(m) ≥ 0 move m produces a valid society w′∑
i :type i votes for c

w ′i = Sc ∀c aggregate points

Sc? ≥ Sc ∀c 6= c? c? wins

O(|C |!) variables ⇒ apply Lenstra: |C |!|C |!〈w〉 = 22#candidatesO(1)

log(#people)

Previous approach: Lenstra

Observation: |C | candidates ⇒ |C |! voter types. Variables, coefficients, etc:

wi = #people of type i on input

mij = #people of type i moved to type j

∆(m)i =
∑

j mji −
∑

j mij = change of the move m

w′ = w + ∆(m) = new society after bribery

Sc = #votes obtained by candidate c

cij = cost of moving from type i to type j

min cm minimum cost move

w′ = w + ∆(m) ≥ 0 move m produces a valid society w′∑
i :type i votes for c

w ′i = Sc ∀c aggregate points

Sc? ≥ Sc ∀c 6= c? c? wins

O(|C |!) variables ⇒ apply Lenstra: |C |!|C |!〈w〉 = 22#candidatesO(1)

log(#people)

Previous approach: Lenstra

Observation: |C | candidates ⇒ |C |! voter types. Variables, coefficients, etc:

wi = #people of type i on input

mij = #people of type i moved to type j

∆(m)i =
∑

j mji −
∑

j mij = change of the move m

w′ = w + ∆(m) = new society after bribery

Sc = #votes obtained by candidate c

cij = cost of moving from type i to type j

min cm minimum cost move

w′ = w + ∆(m) ≥ 0 move m produces a valid society w′∑
i :type i votes for c

w ′i = Sc ∀c aggregate points

Sc? ≥ Sc ∀c 6= c? c? wins

O(|C |!) variables ⇒ apply Lenstra: |C |!|C |!〈w〉 = 22#candidatesO(1)

log(#people)

Complexity of Bribery (contd.)

Theorem (STACS, ESA, AAMAS; Knop, K., Mnich)

Bribery in time:

1 single-exp f (#candidates) · poly(#types) · log(#people) for “simple” rules,

2 f (#types) · poly(#people) for “complex” rules, incl. Dodgson.

Proof of (1).

Idea: ILP has n-fold structure!
Blocks ∼ types of people,
A block ∼ #ppl moving to other type,
(D · · ·D) ∼ voting rule.


D D · · · D
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1



Complexity of Bribery (contd.)

Theorem (STACS, ESA, AAMAS; Knop, K., Mnich)

Bribery in time:

1 single-exp f (#candidates) · poly(#types) · log(#people) for “simple” rules,

2 f (#types) · poly(#people) for “complex” rules, incl. Dodgson.

Proof of (1).

Idea: ILP has n-fold structure!
Blocks ∼ types of people,
A block ∼ #ppl moving to other type,
(D · · ·D) ∼ voting rule.
Adapt/extend algo [Hemmecke, Onn, Romanchuk ’13]

“simple rules”: few constraints, small ‖D‖∞.


D D · · · D
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1



Complexity of Bribery (contd.)

Theorem (STACS, ESA, AAMAS; Knop, K., Mnich)

Bribery in time:

1 single-exp f (#candidates) · poly(#types) · log(#people) for “simple” rules,

2 f (#types) · poly(#people) for “complex” rules, incl. Dodgson.

Proof of (2).

Want: formula ΦDodgson ≡ “F is Dodgson winner” ≡ least #swaps to Condorcet

ΦDodgson ≡ ∃k ∈ N :

{
∃ sequence of k swaps F is Condorcet winner AND

∀c 6=F at least k + 1 swaps c is Condorcet winner.

Encode ΦDodgson in terms of society / move / change vectors
⇒ decide ∃x∀y ∃z : Ψ(x, y, z) sentence ⇒ [much modeling work]

⇒ decide ∀x∃y : A(x, y) ≤ b sentence

Thm [Eisenbrand, Shmonin ’08]: Can decide ∀b ∈ Q ∩ Zm ∃x ∈ Zn : Ax ≤ b

in time f (n,m) · poly(‖A,b‖∞)

Complexity of Bribery (contd.)

Theorem (STACS, ESA, AAMAS; Knop, K., Mnich)

Bribery in time:

1 single-exp f (#candidates) · poly(#types) · log(#people) for “simple” rules,

2 f (#types) · poly(#people) for “complex” rules, incl. Dodgson.

Proof of (2).

Want: formula ΦDodgson ≡ “F is Dodgson winner” ≡ least #swaps to Condorcet

ΦDodgson ≡ ∃k ∈ N :

{
∃ sequence of k swaps F is Condorcet winner AND

∀c 6=F at least k + 1 swaps c is Condorcet winner.

Encode ΦDodgson in terms of society / move / change vectors
⇒ decide ∃x∀y ∃z : Ψ(x, y, z) sentence ⇒ [much modeling work]

⇒ decide ∀x∃y : A(x, y) ≤ b sentence

Thm [Eisenbrand, Shmonin ’08]: Can decide ∀b ∈ Q ∩ Zm ∃x ∈ Zn : Ax ≤ b

in time f (n,m) · poly(‖A,b‖∞)

Complexity of Bribery (contd.)

Theorem (STACS, ESA, AAMAS; Knop, K., Mnich)

Bribery in time:

1 single-exp f (#candidates) · poly(#types) · log(#people) for “simple” rules,

2 f (#types) · poly(#people) for “complex” rules, incl. Dodgson.

Proof of (2).

Want: formula ΦDodgson ≡ “F is Dodgson winner” ≡ least #swaps to Condorcet

ΦDodgson ≡ ∃k ∈ N :

{
∃ sequence of k swaps F is Condorcet winner AND

∀c 6=F at least k + 1 swaps c is Condorcet winner.

Encode ΦDodgson in terms of society / move / change vectors
⇒ decide ∃x∀y ∃z : Ψ(x, y, z) sentence ⇒ [much modeling work]

⇒ decide ∀x∃y : A(x, y) ≤ b sentence

Thm [Eisenbrand, Shmonin ’08]: Can decide ∀b ∈ Q ∩ Zm ∃x ∈ Zn : Ax ≤ b

in time f (n,m) · poly(‖A,b‖∞)

Complexity of Bribery (contd.)

Theorem (STACS, ESA, AAMAS; Knop, K., Mnich)

Bribery in time:

1 single-exp f (#candidates) · poly(#types) · log(#people) for “simple” rules,

2 f (#types) · poly(#people) for “complex” rules, incl. Dodgson.

Proof of (2).

Want: formula ΦDodgson ≡ “F is Dodgson winner” ≡ least #swaps to Condorcet

ΦDodgson ≡ ∃k ∈ N :

{
∃ sequence of k swaps F is Condorcet winner AND

∀c 6=F at least k + 1 swaps c is Condorcet winner.

Encode ΦDodgson in terms of society / move / change vectors
⇒ decide ∃x∀y ∃z : Ψ(x, y, z) sentence ⇒ [much modeling work]

⇒ decide ∀x∃y : A(x, y) ≤ b sentence

Thm [Eisenbrand, Shmonin ’08]: Can decide ∀b ∈ Q ∩ Zm ∃x ∈ Zn : Ax ≤ b

in time f (n,m) · poly(‖A,b‖∞)

Modeling Campaigning:
Polytope Games

Campaigning Game

So far: bribe, then vote. What about more rounds?

k-round Campaigning Game:

Given:

Society w0,

cost vectors c1, . . . , c2k ,

round budgets b1, . . . , b2k ∈ N,

voting rule R,

players P and Q.

k = 1 ≡ ∃x∀y : A(x, y) ≤ b ⇒
solvable in f (#types) poly(#people)

k ≥ 2 ≡ ∃x1 · · · ∀yk : A(x1, . . . , yk) ≤ b
BUT

Theorem (Nguyen, Pak ’17)

∀∃∀-ILP is NP-c in dimension ≥ 6!

Play: in each round i ∈ {1, . . . , k},

P picks a move m2i−1 w/ cost
c2i−1m2i−1 ≤ b2i−1 valid for
society w2i−2

⇒ new society
w2i−1 := w2i−2 + ∆(m2i−1)

Q reacts by picking m2i with
cost c2im2i ≤ b2i valid for
society w2i−1

⇒ w2i := w2i−1 + ∆(m2i−1)

P wins if F wins in society w2k

under rule R.
Decide: P has winning strategy?

Campaigning Game

So far: bribe, then vote. What about more rounds?
k-round Campaigning Game:

Given:

Society w0,

cost vectors c1, . . . , c2k ,

round budgets b1, . . . , b2k ∈ N,

voting rule R,

players P and Q.

k = 1 ≡ ∃x∀y : A(x, y) ≤ b ⇒
solvable in f (#types) poly(#people)

k ≥ 2 ≡ ∃x1 · · · ∀yk : A(x1, . . . , yk) ≤ b
BUT

Theorem (Nguyen, Pak ’17)

∀∃∀-ILP is NP-c in dimension ≥ 6!

Play: in each round i ∈ {1, . . . , k},

P picks a move m2i−1 w/ cost
c2i−1m2i−1 ≤ b2i−1 valid for
society w2i−2

⇒ new society
w2i−1 := w2i−2 + ∆(m2i−1)

Q reacts by picking m2i with
cost c2im2i ≤ b2i valid for
society w2i−1

⇒ w2i := w2i−1 + ∆(m2i−1)

P wins if F wins in society w2k

under rule R.
Decide: P has winning strategy?

Campaigning Game

So far: bribe, then vote. What about more rounds?
k-round Campaigning Game:

Given:

Society w0,

cost vectors c1, . . . , c2k ,

round budgets b1, . . . , b2k ∈ N,

voting rule R,

players P and Q.

k = 1 ≡ ∃x∀y : A(x, y) ≤ b ⇒
solvable in f (#types) poly(#people)

k ≥ 2 ≡ ∃x1 · · · ∀yk : A(x1, . . . , yk) ≤ b
BUT

Theorem (Nguyen, Pak ’17)

∀∃∀-ILP is NP-c in dimension ≥ 6!

Play: in each round i ∈ {1, . . . , k},

P picks a move m2i−1 w/ cost
c2i−1m2i−1 ≤ b2i−1 valid for
society w2i−2

⇒ new society
w2i−1 := w2i−2 + ∆(m2i−1)

Q reacts by picking m2i with
cost c2im2i ≤ b2i valid for
society w2i−1

⇒ w2i := w2i−1 + ∆(m2i−1)

P wins if F wins in society w2k

under rule R.
Decide: P has winning strategy?

Campaigning Game

So far: bribe, then vote. What about more rounds?
k-round Campaigning Game:

Given:

Society w0,

cost vectors c1, . . . , c2k ,

round budgets b1, . . . , b2k ∈ N,

voting rule R,

players P and Q.

k = 1 ≡ ∃x∀y : A(x, y) ≤ b ⇒
solvable in f (#types) poly(#people)

k ≥ 2 ≡ ∃x1 · · · ∀yk : A(x1, . . . , yk) ≤ b
BUT

Theorem (Nguyen, Pak ’17)

∀∃∀-ILP is NP-c in dimension ≥ 6!

Play: in each round i ∈ {1, . . . , k},
P picks a move m2i−1 w/ cost
c2i−1m2i−1 ≤ b2i−1 valid for
society w2i−2

⇒ new society
w2i−1 := w2i−2 + ∆(m2i−1)

Q reacts by picking m2i with
cost c2im2i ≤ b2i valid for
society w2i−1

⇒ w2i := w2i−1 + ∆(m2i−1)

P wins if F wins in society w2k

under rule R.
Decide: P has winning strategy?

Campaigning Game

So far: bribe, then vote. What about more rounds?
k-round Campaigning Game:

Given:

Society w0,

cost vectors c1, . . . , c2k ,

round budgets b1, . . . , b2k ∈ N,

voting rule R,

players P and Q.

k = 1 ≡ ∃x∀y : A(x, y) ≤ b ⇒
solvable in f (#types) poly(#people)

k ≥ 2 ≡ ∃x1 · · · ∀yk : A(x1, . . . , yk) ≤ b
BUT

Theorem (Nguyen, Pak ’17)

∀∃∀-ILP is NP-c in dimension ≥ 6!

Play: in each round i ∈ {1, . . . , k},
P picks a move m2i−1 w/ cost
c2i−1m2i−1 ≤ b2i−1 valid for
society w2i−2

⇒ new society
w2i−1 := w2i−2 + ∆(m2i−1)

Q reacts by picking m2i with
cost c2im2i ≤ b2i valid for
society w2i−1

⇒ w2i := w2i−1 + ∆(m2i−1)

P wins if F wins in society w2k

under rule R.
Decide: P has winning strategy?

Campaigning Game

So far: bribe, then vote. What about more rounds?
k-round Campaigning Game:

Given:

Society w0,

cost vectors c1, . . . , c2k ,

round budgets b1, . . . , b2k ∈ N,

voting rule R,

players P and Q.

k = 1 ≡ ∃x∀y : A(x, y) ≤ b ⇒
solvable in f (#types) poly(#people)

k ≥ 2 ≡ ∃x1 · · · ∀yk : A(x1, . . . , yk) ≤ b
BUT

Theorem (Nguyen, Pak ’17)

∀∃∀-ILP is NP-c in dimension ≥ 6!

Play: in each round i ∈ {1, . . . , k},
P picks a move m2i−1 w/ cost
c2i−1m2i−1 ≤ b2i−1 valid for
society w2i−2

⇒ new society
w2i−1 := w2i−2 + ∆(m2i−1)

Q reacts by picking m2i with
cost c2im2i ≤ b2i valid for
society w2i−1

⇒ w2i := w2i−1 + ∆(m2i−1)

P wins if F wins in society w2k

under rule R.
Decide: P has winning strategy?

Campaigning Game

So far: bribe, then vote. What about more rounds?
k-round Campaigning Game:

Given:

Society w0,

cost vectors c1, . . . , c2k ,

round budgets b1, . . . , b2k ∈ N,

voting rule R,

players P and Q.

k = 1 ≡ ∃x∀y : A(x, y) ≤ b ⇒
solvable in f (#types) poly(#people)

k ≥ 2 ≡ ∃x1 · · · ∀yk : A(x1, . . . , yk) ≤ b
BUT

Theorem (Nguyen, Pak ’17)

∀∃∀-ILP is NP-c in dimension ≥ 6!

Play: in each round i ∈ {1, . . . , k},
P picks a move m2i−1 w/ cost
c2i−1m2i−1 ≤ b2i−1 valid for
society w2i−2

⇒ new society
w2i−1 := w2i−2 + ∆(m2i−1)

Q reacts by picking m2i with
cost c2im2i ≤ b2i valid for
society w2i−1

⇒ w2i := w2i−1 + ∆(m2i−1)

P wins if F wins in society w2k

under rule R.
Decide: P has winning strategy?

Campaigning Game

So far: bribe, then vote. What about more rounds?
k-round Campaigning Game:

Given:

Society w0,

cost vectors c1, . . . , c2k ,

round budgets b1, . . . , b2k ∈ N,

voting rule R,

players P and Q.

k = 1 ≡ ∃x∀y : A(x, y) ≤ b ⇒
solvable in f (#types) poly(#people)

k ≥ 2 ≡ ∃x1 · · · ∀yk : A(x1, . . . , yk) ≤ b

BUT

Theorem (Nguyen, Pak ’17)

∀∃∀-ILP is NP-c in dimension ≥ 6!

Play: in each round i ∈ {1, . . . , k},
P picks a move m2i−1 w/ cost
c2i−1m2i−1 ≤ b2i−1 valid for
society w2i−2

⇒ new society
w2i−1 := w2i−2 + ∆(m2i−1)

Q reacts by picking m2i with
cost c2im2i ≤ b2i valid for
society w2i−1

⇒ w2i := w2i−1 + ∆(m2i−1)

P wins if F wins in society w2k

under rule R.
Decide: P has winning strategy?

Campaigning Game

So far: bribe, then vote. What about more rounds?
k-round Campaigning Game:

Given:

Society w0,

cost vectors c1, . . . , c2k ,

round budgets b1, . . . , b2k ∈ N,

voting rule R,

players P and Q.

k = 1 ≡ ∃x∀y : A(x, y) ≤ b ⇒
solvable in f (#types) poly(#people)

k ≥ 2 ≡ ∃x1 · · · ∀yk : A(x1, . . . , yk) ≤ b
BUT

Theorem (Nguyen, Pak ’17)

∀∃∀-ILP is NP-c in dimension ≥ 6!

Play: in each round i ∈ {1, . . . , k},
P picks a move m2i−1 w/ cost
c2i−1m2i−1 ≤ b2i−1 valid for
society w2i−2

⇒ new society
w2i−1 := w2i−2 + ∆(m2i−1)

Q reacts by picking m2i with
cost c2im2i ≤ b2i valid for
society w2i−1

⇒ w2i := w2i−1 + ∆(m2i−1)

P wins if F wins in society w2k

under rule R.
Decide: P has winning strategy?

Polytope Game(s)

k-round Polytope Game:
Given:

Point x0 ∈ Rn,

polytopes P1,Q1, . . . ,Pk ,Qk ⊆ Rn,

target polytope W ⊆ Rn,

players P and Q.

Play: in each round i ∈ {1, . . . , k},
P picks a move pi ∈ Pi

⇒ x2i−1 := x2i−2 + pi

Q reacts by picking qi ∈ Qi

⇒ x2i := x2i−1 + qi

P wins if x2k ∈W
Decide: P has winning strategy?

Polytope Game(s)

k-round Polytope Game:
Given:

Point x0 ∈ Rn,

polytopes P1,Q1, . . . ,Pk ,Qk ⊆ Rn,

target polytope W ⊆ Rn,

players P and Q.

Play: in each round i ∈ {1, . . . , k},
P picks a move pi ∈ Pi

⇒ x2i−1 := x2i−2 + pi

Q reacts by picking qi ∈ Qi

⇒ x2i := x2i−1 + qi

P wins if x2k ∈W
Decide: P has winning strategy?

Polytope Game(s)

k-round Polytope Game:
Given:

Point x0 ∈ Rn,

polytopes P1,Q1, . . . ,Pk ,Qk ⊆ Rn,

target polytope W ⊆ Rn,

players P and Q.

Play: in each round i ∈ {1, . . . , k},
P picks a move pi ∈ Pi

⇒ x2i−1 := x2i−2 + pi

Q reacts by picking qi ∈ Qi

⇒ x2i := x2i−1 + qi

P wins if x2k ∈W
Decide: P has winning strategy?

Positions in W “resistent” to moves in Qk :

W ′ = {w | ∀q ∈ Qk : w + q ∈W } = W ∼ Qk ⇐ Minkowski difference!

Polytope Game(s)

k-round Polytope Game:
Given:

Point x0 ∈ Rn,

polytopes P1,Q1, . . . ,Pk ,Qk ⊆ Rn,

target polytope W ⊆ Rn,

players P and Q.

Play: in each round i ∈ {1, . . . , k},
P picks a move pi ∈ Pi

⇒ x2i−1 := x2i−2 + pi

Q reacts by picking qi ∈ Qi

⇒ x2i := x2i−1 + qi

P wins if x2k ∈W
Decide: P has winning strategy?

Positions in W “resistent” to moves in Qk :
W ′ = {w | ∀q ∈ Qk : w + q ∈W } = W ∼ Qk ⇐ Minkowski difference!

Positions in W ′ “reachable” by moves in Pk :

W ′′ = {w + p | p ∈ Pk ,w ∈W ′} = W + Pk ⇐ Minkowski sum!

Polytope Game(s)

k-round Polytope Game:
Given:

Point x0 ∈ Rn,

polytopes P1,Q1, . . . ,Pk ,Qk ⊆ Rn,

target polytope W ⊆ Rn,

players P and Q.

Play: in each round i ∈ {1, . . . , k},
P picks a move pi ∈ Pi

⇒ x2i−1 := x2i−2 + pi

Q reacts by picking qi ∈ Qi

⇒ x2i := x2i−1 + qi

P wins if x2k ∈W
Decide: P has winning strategy?

Positions in W “resistent” to moves in Qk :
W ′ = {w | ∀q ∈ Qk : w + q ∈W } = W ∼ Qk ⇐ Minkowski difference!

Positions in W ′ “reachable” by moves in Pk :

W ′′ = {w + p | p ∈ Pk ,w ∈W ′} = W + Pk ⇐ Minkowski sum!

Polytope Game(s)

Positions in W “resistent” to moves in Qk :
W ′ = {w | ∀q ∈ Qk : w + q ∈W } = W ∼ Qk ⇐ Minkowski difference!

Positions in W ′ “reachable” by moves in Pk :

W ′′ = {w + p | p ∈ Pk ,w ∈W ′} = W + Pk ⇐ Minkowski sum!

“Theorem”

Solve in time f (n, d , k) · 〈∑i ‖Pi ,Qi‖∞〉 w/ d = maxi #ineqs describing Pi ,Qi .

Proof.

Repeatedly apply Minkowski difference and sum (we always stay convex).

Polytope Game(s)

k-round Integer Polytope Game:
Given:

Point x0 ∈ Zn,

polytopes P1,Q1, . . . ,Pk ,Qk ⊆ Rn,

target polytope W ⊆ Rn,

players P and Q.

Play: in each round i ∈ {1, . . . , k},
P picks a move pi ∈ Pi ∩ Zn

⇒ x2i−1 := x2i−2 + pi

Q reacts by picking qi ∈ Qi ∩ Zn

⇒ x2i := x2i−1 + qi

P wins if x2k ∈W
Decide: P has winning strategy?

Polytope Game(s)

k-round Integer Polytope Game:
Given:

Point x0 ∈ Zn,

polytopes P1,Q1, . . . ,Pk ,Qk ⊆ Rn,

target polytope W ⊆ Rn,

players P and Q.

Play: in each round i ∈ {1, . . . , k},
P picks a move pi ∈ Pi ∩ Zn

⇒ x2i−1 := x2i−2 + pi

Q reacts by picking qi ∈ Qi ∩ Zn

⇒ x2i := x2i−1 + qi

P wins if x2k ∈W
Decide: P has winning strategy?

Gets more complicated: even if W ′, Pk are integer points of a convex set,
W ′ + Pk is not!
Still: given ILP(W) and ILP(Qk),

can define ILP(W ′) = ILP(W) ∼ ILP(Qk), and,
can define ILP(W ′′) = ILP(W ′) + ILP(Pk).

Polytope Game(s)

Gets more complicated: even if W ′, Pk are integer points of a convex set,
W ′ + Pk is not!
Still: given ILP(W) and ILP(Qk),

can define ILP(W ′) = ILP(W) ∼ ILP(Qk), and,
can define ILP(W ′′) = ILP(W ′) + ILP(Pk).

“Theorem”

Solve in time f (k , n, d maxi coeff(Pi ,Qi)) · 〈∑i rhs(Pi ,Qi)〉.

Proof.

Repeatedly apply Minkowski difference and sum (but now the result is possibly

non-convex BUT is a projection of a convex set) + Integer hull bounds +

Lenstra.

Polytope Game(s)

k-round Nonnegative Integer Polytope Game:
Given:

Point x0 ∈ Nn,

polytopes P1,Q1, . . . ,Pk ,Qk ⊆ Rn,

target polytope W ⊆ Rn,

players P and Q.

Play: in each round i ∈ {1, . . . , k},
P picks a move pi ∈ Pi ∩ Zn

⇒ x2i−1 := x2i−2 + pi ≥ 0

Q reacts by picking qi ∈ Qi ∩ Zn

⇒ x2i := x2i−1 + qi ≥ 0

P wins if x2k ∈W
Decide: P has winning strategy?

Polytope Game(s)

W ∼≥0 Qk not convex anymore, even without integrality!

W

Qk

W ∼≥0 Qk

Qk

W

Qk Qk

W ∼≥0 Qk

Polytope Game(s)

W ∼≥0 Qk not convex anymore, even without integrality!

W

Qk

W ∼≥0 Qk

Qk

W

Qk Qk

W ∼≥0 Qk

What could be done:
nonnegative game?

integer nonneg game?

Polytope Game(s)

W ∼≥0 Qk not convex anymore, even without integrality!

W

Qk

W ∼≥0 Qk

Qk

W

Qk Qk

W ∼≥0 Qk

What could be done:
nonnegative game?

integer nonneg game?

Thank you!

	Outline
	Elections & Bribery: Geometric Viewpoint
	New Algorithms for Bribery
	Modeling Campaigning: Polytope Games

