
An Algorithmic Theory of Integer Programming

Friedrich Eisenbrand, Christoph Hunkenschröder, Kim-Manuel Klein,
Martin Koutecký, Asaf Levin, Shmuel Onn
MIP 2019, MIT



Outline



Outline

My goal is to sell you this paper:
An Algorithmic Theory of Integer Programming [arxiv:1904.01361]
Friedrich Eisenbrand, Christoph Hunkenschröder, Kim-Manuel Klein, Martin Koutecký, Asaf Levin, Shmuel Onn

Talk Outline:
1. Integer Programming: Structural Parameterizations
2. The Theory: Iterative Augmentation
3. The Extras: Proximity, Scaling, Reducibility, Near-linear / Strongly Polynomial
Algorithms, Lower Bounds, etc.

4. Outlook



Outline

My goal is to sell you this paper:
An Algorithmic Theory of Integer Programming [arxiv:1904.01361]
Friedrich Eisenbrand, Christoph Hunkenschröder, Kim-Manuel Klein, Martin Koutecký, Asaf Levin, Shmuel Onn

Talk Outline:
1. Integer Programming: Structural Parameterizations
2. The Theory: Iterative Augmentation
3. The Extras: Proximity, Scaling, Reducibility, Near-linear / Strongly Polynomial
Algorithms, Lower Bounds, etc.

4. Outlook



Outline

My goal is to sell you this paper:
An Algorithmic Theory of Integer Programming [arxiv:1904.01361]
Friedrich Eisenbrand, Christoph Hunkenschröder, Kim-Manuel Klein, Martin Koutecký, Asaf Levin, Shmuel Onn

Talk Outline:
1. Integer Programming: Structural Parameterizations
2. The Theory: Iterative Augmentation
3. The Extras: Proximity, Scaling, Reducibility, Near-linear / Strongly Polynomial
Algorithms, Lower Bounds, etc.

4. Outlook



Outline

My goal is to sell you this paper:
An Algorithmic Theory of Integer Programming [arxiv:1904.01361]
Friedrich Eisenbrand, Christoph Hunkenschröder, Kim-Manuel Klein, Martin Koutecký, Asaf Levin, Shmuel Onn

Talk Outline:
1. Integer Programming: Structural Parameterizations
2. The Theory: Iterative Augmentation
3. The Extras: Proximity, Scaling, Reducibility, Near-linear / Strongly Polynomial
Algorithms, Lower Bounds, etc.

4. Outlook



Outline

My goal is to sell you this paper:
An Algorithmic Theory of Integer Programming [arxiv:1904.01361]
Friedrich Eisenbrand, Christoph Hunkenschröder, Kim-Manuel Klein, Martin Koutecký, Asaf Levin, Shmuel Onn

Talk Outline:
1. Integer Programming: Structural Parameterizations
2. The Theory: Iterative Augmentation
3. The Extras: Proximity, Scaling, Reducibility, Near-linear / Strongly Polynomial
Algorithms, Lower Bounds, etc.

4. Outlook



Integer Programming: Structural
Parameterizations



Variable Dimension: Unifying Theory

⇓

👁 Real world is high-dimensional!
Brief history of variable dimension IP:
• 1960’s: Total Unimodularity (paths, matchings, flows)
[Hoffman, Kruskal]

• 1980’s: ILPs with few rows (generalized knapsack)
[Papadimitriou; Eisenbrand, Weismantel; Jansen, Rohwedder]

• 2010–: Iterative methods for block structured
programs [Aschenbrenner, Chen, De Loera, Hemmecke,

Köppe, Lee, Marx, Onn, Romanchuk, Schulz, Weismantel]

• 2015–: Tree-structured ILPs
[Ganian, Jansen, Kratsch, Ordyniak, Ramanujan]

No strongly polynomial algorithms for these classes (and
few overall: TU, bimodular, binet). Seemingly disconnected
classes, different methods.

Our result: improves, unifies, simplifies, makes strongly-poly all of these results!
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Structural Parameterizations: The Graphs of A

min f(x) : Ax = b, l ≤ x ≤ u, x ∈ Zn (IP)
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x2 + 2x3 = 2 (C3)

−x1 + 3x4 = 2 (C4)
0 ≤ x1, x2, x3, x4 ≤ 5 (box)
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Structural Parameterizations: Small Graphs ≈ Classics

Lenstra ’83⇒ ILP solvable in time fP(|GP|) · 〈A,b,w〉

because |GP| < |GI| also in fP(|GI|) · 〈A,b,w〉

Papadimitriou ’81⇒ ILP solvable in time fD(|GD|, ‖A‖∞) · n · 〈b,w〉
can’t parameterize only by |GD| or ‖A‖∞.

Graph size = too strict a parameter. What else?
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Structural Parameterizations: Treewidth
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Structural Parameterizations: Treedepth

size

vc
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td(G) =


1 if |V(G)| = 1,
1+minv∈V(G) td(G− v) if connected,
maxGi component td(Gi) if disconnected
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maxGi component td(Gi) if disconnected

• Main result: IP solvable in time
g(min{tdP(A), tdD(A)}, ‖A‖∞) · poly(n)

⇒ FPT par. by min{tdP(A), tdD(A)} and ‖A‖∞

• ILP NP-h for tdI = 5 and ‖A‖∞ = 1 [Eiben et al. ’19]
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The Theory: Iterative Augmentation



Iterative Augmentation

min f(x) : Ax = b, l ≤ x ≤ u, x ∈ Zn

Min-cost flow

Answer: (x v y⇔ x and y in same orthant ∧ |xi| ≤ |yi|; g ∈ G(A) ≈ “closest to origin”)

Definition (Graver basis)
G(A) = {x ∈ KerZ(A) | x is v -minimal}



Iterative Augmentation

min f(x) : Ax = b, l ≤ x ≤ u, x ∈ Zn

Min-cost flow

Answer: (x v y⇔ x and y in same orthant ∧ |xi| ≤ |yi|; g ∈ G(A) ≈ “closest to origin”)

Definition (Graver basis)
G(A) = {x ∈ KerZ(A) | x is v -minimal}



Iterative Augmentation

min f(x) : Ax = b, l ≤ x ≤ u, x ∈ Zn

Min-cost flow

Answer: (x v y⇔ x and y in same orthant ∧ |xi| ≤ |yi|; g ∈ G(A) ≈ “closest to origin”)

Definition (Graver basis)
G(A) = {x ∈ KerZ(A) | x is v -minimal}



Iterative Augmentation

min f(x) : Ax = b, l ≤ x ≤ u, x ∈ Zn

Min-cost flow

a step ≡ a cycle C
(because circulations decompose into cycles)

C feasible if enough capacity (fits res. net)
C augmenting if negative
flow cost minimal if 6 ∃ negative cycle

Answer: (x v y⇔ x and y in same orthant ∧ |xi| ≤ |yi|; g ∈ G(A) ≈ “closest to origin”)

Definition (Graver basis)
G(A) = {x ∈ KerZ(A) | x is v -minimal}



Iterative Augmentation

min f(x) : Ax = b, l ≤ x ≤ u, x ∈ Zn

Min-cost flow

a step ≡ a cycle C
(because circulations decompose into cycles)

C feasible if enough capacity (fits res. net)
C augmenting if negative
flow cost minimal if 6 ∃ negative cycle

Answer: (x v y⇔ x and y in same orthant ∧ |xi| ≤ |yi|; g ∈ G(A) ≈ “closest to origin”)

Definition (Graver basis)
G(A) = {x ∈ KerZ(A) | x is v -minimal}



Iterative Augmentation

min f(x) : Ax = b, l ≤ x ≤ u, x ∈ Zn

Integer Programming

g ∈ KerZ(A) = {g ∈ Zn | Ag = 0}
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x optimal if 6 ∃ augmenting g ∈ KerZ(A)
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Iterative Augmentation (Sec 2.1)

(x v y⇔ x and y in same orthant ∧ |xi| ≤ |yi|; g ∈ G(A) ≈ “closest to origin”)

Definition (Graver basis)
G(A) = {x ∈ KerZ(A) | x is v -minimal}

Prop 6: Every h ∈ KerZ(A) conformally decomposes as h =
∑2n

i=1 λigi

Df: h ∈ KerZ(A) is Graver-best step for x if as good as λg for any λ ∈ N, g ∈ G(A)
Df: h ∈ KerZ(A) is halfling if half as good as Graver-best

Lm 7: Need 3n log fmax halflings for convergence (reduce ≈ 1
n of gap by each step)

Lm 9: If h as good as any λg for λ ∈ {1, 2, 4, 8, . . . } and g ∈ G(A), then h is halfling
Df: g solves G(A)-best{f(x+ λg | Ag = 0, l ≤ x+ λg ≤ u, g ∈ Zn)} if as good as

min{f(x+ λg | Ag = 0, l ≤ x+ λg ≤ u, g ∈ G(A))},

call it (AugIP)

Lm 12: (AugIP) & x0 Lm 7 & 9
=====⇒ (IP) (≈ n log ‖u− l‖∞ log fmax calls to (AugIP) oracle)

Lm 13: (AugIP) =⇒ x0 (auxiliary instance: get x s.t. Ax = b, then minimize bound violation)



Iterative Augmentation (Sec 2.1)

(x v y⇔ x and y in same orthant ∧ |xi| ≤ |yi|; g ∈ G(A) ≈ “closest to origin”)

Definition (Graver basis)
G(A) = {x ∈ KerZ(A) | x is v -minimal}

Prop 6: Every h ∈ KerZ(A) conformally decomposes as h =
∑2n

i=1 λigi
Df: h ∈ KerZ(A) is Graver-best step for x if as good as λg for any λ ∈ N, g ∈ G(A)
Df: h ∈ KerZ(A) is halfling if half as good as Graver-best

Lm 7: Need 3n log fmax halflings for convergence (reduce ≈ 1
n of gap by each step)

Lm 9: If h as good as any λg for λ ∈ {1, 2, 4, 8, . . . } and g ∈ G(A), then h is halfling
Df: g solves G(A)-best{f(x+ λg | Ag = 0, l ≤ x+ λg ≤ u, g ∈ Zn)} if as good as

min{f(x+ λg | Ag = 0, l ≤ x+ λg ≤ u, g ∈ G(A))},

call it (AugIP)

Lm 12: (AugIP) & x0 Lm 7 & 9
=====⇒ (IP) (≈ n log ‖u− l‖∞ log fmax calls to (AugIP) oracle)

Lm 13: (AugIP) =⇒ x0 (auxiliary instance: get x s.t. Ax = b, then minimize bound violation)



Iterative Augmentation (Sec 2.1)

(x v y⇔ x and y in same orthant ∧ |xi| ≤ |yi|; g ∈ G(A) ≈ “closest to origin”)

Definition (Graver basis)
G(A) = {x ∈ KerZ(A) | x is v -minimal}

Prop 6: Every h ∈ KerZ(A) conformally decomposes as h =
∑2n

i=1 λigi
Df: h ∈ KerZ(A) is Graver-best step for x if as good as λg for any λ ∈ N, g ∈ G(A)
Df: h ∈ KerZ(A) is halfling if half as good as Graver-best

Lm 7: Need 3n log fmax halflings for convergence (reduce ≈ 1
n of gap by each step)

Lm 9: If h as good as any λg for λ ∈ {1, 2, 4, 8, . . . } and g ∈ G(A), then h is halfling

Df: g solves G(A)-best{f(x+ λg | Ag = 0, l ≤ x+ λg ≤ u, g ∈ Zn)} if as good as
min{f(x+ λg | Ag = 0, l ≤ x+ λg ≤ u, g ∈ G(A))},

call it (AugIP)

Lm 12: (AugIP) & x0 Lm 7 & 9
=====⇒ (IP) (≈ n log ‖u− l‖∞ log fmax calls to (AugIP) oracle)

Lm 13: (AugIP) =⇒ x0 (auxiliary instance: get x s.t. Ax = b, then minimize bound violation)



Iterative Augmentation (Sec 2.1)

(x v y⇔ x and y in same orthant ∧ |xi| ≤ |yi|; g ∈ G(A) ≈ “closest to origin”)

Definition (Graver basis)
G(A) = {x ∈ KerZ(A) | x is v -minimal}

Prop 6: Every h ∈ KerZ(A) conformally decomposes as h =
∑2n

i=1 λigi
Df: h ∈ KerZ(A) is Graver-best step for x if as good as λg for any λ ∈ N, g ∈ G(A)
Df: h ∈ KerZ(A) is halfling if half as good as Graver-best

Lm 7: Need 3n log fmax halflings for convergence (reduce ≈ 1
n of gap by each step)

Lm 9: If h as good as any λg for λ ∈ {1, 2, 4, 8, . . . } and g ∈ G(A), then h is halfling
Df: g solves G(A)-best{f(x+ λg | Ag = 0, l ≤ x+ λg ≤ u, g ∈ Zn)} if as good as

min{f(x+ λg | Ag = 0, l ≤ x+ λg ≤ u, g ∈ G(A))},

call it (AugIP)
Lm 12: (AugIP) & x0 Lm 7 & 9

=====⇒ (IP) (≈ n log ‖u− l‖∞ log fmax calls to (AugIP) oracle)
Lm 13: (AugIP) =⇒ x0 (auxiliary instance: get x s.t. Ax = b, then minimize bound violation)



Iterative Augmentation (Sec 2.1)

(x v y⇔ x and y in same orthant ∧ |xi| ≤ |yi|; g ∈ G(A) ≈ “closest to origin”)

Definition (Graver basis)
G(A) = {x ∈ KerZ(A) | x is v -minimal}

Prop 6: Every h ∈ KerZ(A) conformally decomposes as h =
∑2n

i=1 λigi
Df: h ∈ KerZ(A) is Graver-best step for x if as good as λg for any λ ∈ N, g ∈ G(A)
Df: h ∈ KerZ(A) is halfling if half as good as Graver-best

Lm 7: Need 3n log fmax halflings for convergence (reduce ≈ 1
n of gap by each step)

Lm 9: If h as good as any λg for λ ∈ {1, 2, 4, 8, . . . } and g ∈ G(A), then h is halfling
Df: g solves G(A)-best{f(x+ λg | Ag = 0, l ≤ x+ λg ≤ u, g ∈ Zn)} if as good as

min{f(x+ λg | Ag = 0, l ≤ x+ λg ≤ u, g ∈ G(A))}, call it (AugIP)

Lm 12: (AugIP) & x0 Lm 7 & 9
=====⇒ (IP) (≈ n log ‖u− l‖∞ log fmax calls to (AugIP) oracle)

Lm 13: (AugIP) =⇒ x0 (auxiliary instance: get x s.t. Ax = b, then minimize bound violation)



Iterative Augmentation (Sec 2.1)

(x v y⇔ x and y in same orthant ∧ |xi| ≤ |yi|; g ∈ G(A) ≈ “closest to origin”)

Definition (Graver basis)
G(A) = {x ∈ KerZ(A) | x is v -minimal}

Prop 6: Every h ∈ KerZ(A) conformally decomposes as h =
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Df: h ∈ KerZ(A) is halfling if half as good as Graver-best
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Iterative Augmentation (Sections 2.3–2.4)

Df: g∞(A) = maxg∈G(A) ‖g‖∞, g1(A) = maxg∈G(A) ‖g‖1

Sec 2.3: Solving (AugIP) quickly by DP

Lm 22: (AugIP) solvable in time (2g∞(A) + 1)tdP(A) · n (≈ CSP arc-consistency DP ’85)
Lm 23: (AugIP) solvable in time (2‖A‖∞g1(A) + 1)O(tdD(A)) · n (≈ Papadimitriou’s DP ’81)

Sec 2.4: Bounding Graver norms

(better for relevant special cases)
Lm 26: g∞(A) ≤ g(‖A‖∞, tdP(A)) (g is exponential tower. Pf uses new lemma of Klein.)
Lm 28: g1(A) ≤ g(‖A‖∞, tdD(A)) (g is double-exp. Pf uses Steinitz lemma.)

Theorem
(IP) solvable in time g(min{tdP(A), tdD(A)}, ‖A‖∞)n2 log ‖u− l‖∞ log fmax.
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The Extras: Proximity Bounds

Theorem (Basic proximity)
Let x∗, z∗ be a fractional and integer optimum, respectively. There exist x̂, ẑ frac/int
optima s.t., for any p ≥ 1,

‖x∗ − ẑ‖p, ‖z∗ − x̂‖p ≤ n · gp(A) .

Theorem (Scaling proximity)
Let xs be opt of s-scaled down instance. There exists x∗ opt s.t.

‖s · xs − x∗‖p ≤ s · n · gp(A) .

“Modern version” of [Hochbaum, Shantikumar ’90]
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The Extras: Reducibility Bounds

Runtime dependence on log fmax ≈ obstacle for strongly-poly algos

=⇒ Replace wx with w′x which is equivalent (does not change optima) and
‖w′‖∞ ≤ 2poly(N,n) if ‖u, `‖∞ ≤ N. [Frank, Tardos ’87]

BUT: adds n3 log n factor in the runtime :(

Theorem (Linear reducibility)
1) ∃ equivalent w′ s.t. ‖w′‖∞ ≤ Nn, 2) asymptotically optimal

Theorem (Separable-convex reducibility)
1) ∃ equivalent f′ s.t. f′max ≤ (n2N)nN, 2) asymptotically optimal
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The Extras: Strongly-poly Algorithm

Goal: Strongly-polynomial algorithm (#arithmetic ops not dep on size of numbers)

1. Solve LP relaxation in poly(n · 〈A〉) time [Tardos ’86]

2. Proximity: int opt not far from frac opt⇒ shrink bounds l′,u′, shrink rhs b′.
3. Reduce objective: l′,u′ give small box⇒ equiv. w′ w/ small ‖w′‖∞
4. Convergence: 3n〈A,w′,b′, l′,u′〉 = poly(n · 〈A〉) halflings reach optimum.

Theorem
ILP solvable in time g(min{tdP(A), tdD(A)}, ‖A‖∞)poly(n).
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The Extras: Near-linear Algorithms

Goal: Improve n2 to npoly log n.

Small tdP(A)

• Replace halflings with a more expensive, more powerful steps
=⇒ g∞(A) · log fmax steps convergence (instead of n · log fmax)

• Need all tricks to smooth remaining issues (proximity-scaling, reducibility, ...)

Small tdD(A)

• 👁: since g1(A) small, only few coordinates of x changed in each step
• =⇒ construct a data structure computing (AugIP) which updates in log n time
after a halfling step

Theorem ((more or less))
(IP) solvable in time g(min{tdP(A), tdD(A)}, ‖A‖∞)n logO(1) n log ‖u− l‖∞ log fmax.
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An Algorithmic Theory of Integer Programming [arxiv:1904.01361]
Don’t be afraid of the paper!

• Other results:

• ETH-based lower bounds
• Applications: scheduling, bin packing, computational social choice, ...

• New directions:

• Mixed-integer? Yes when f(x) = wx, sep-convex open.
• Implementation: DP is the main obstacle. We need help!
• Row-invariant parameters: branch-depth, ...?

Thank you!
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